Demonstration: saving data in Maps 3.3

Prerequisites:

Sample loaded
Sample at eucentric height
Electron beam on

Maps software started

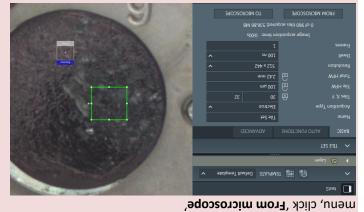
Saving images

After a tile scan was recorded, it can be saved.

Experiment: save tile scan

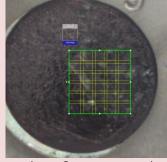
Click the 'Save image to file button'

Select the region you want to export


Focused ion beam

Introduction

Version 10 – May 2025


PART II – BASIC MILLING CONCEPTS

Use the appropriate pattern and draw on the region of interest. Then, from the left

This reads the settings of the microscope and calculates the number of tiles that are

required. The image is updated:

Run the tile scan by clicking the run icon at the bottom (1 job waiting):

Demonstration: Correlative microscopy (Maps 3.3)

Prerequisites:

Sample loaded

Sample set at eucentric height

Electron beam on

Start the Maps 3.3 software

Select Maps 3.3 from the top left FEI menu:

Or double-click the icon on the left screen:

The software will open and request to open an existing project or start a new project. Note: each project's name must be unique. Make sure you save on the support PC!

Experiment: import the nav-cam picture

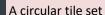
on the top right, click this button to load the nav-cam picture from the Xt software.

Note: the precision of this image is not very great. Expect mismatches of several mm.

Experiment: create a tile-scan

Step 1: Set up a single image in the xT software (see above) Calculate the resolution = HFW / pixels along the x-axis

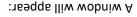
Step 2: Click the tile scan icon in Maps


There are 3 types of tile scans:

A square tile set

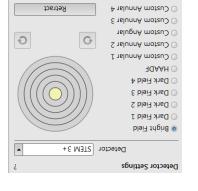
A freehand tile set

2. Insert the STEM detector


Double-check in the chamber view if the path below the stage is free. Double-check you are in focus, at 7mm

Experiment: insert the STEM detector

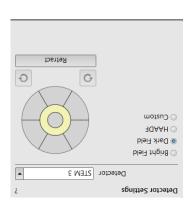
Cancel



- In the menu Detectors: - Select the STEM3 detector from the dropdown list
- Click 'Insert"

Select the relevant option, i.e. the situation which describes the stage and the rowbar.

STEM 3 and STE3M+ allow the selection of different parts of the detector to be active.



Horizontal Holder

Select your sample holder configuration

Pretilted holder - STEM imaging

Pretilted Holder - FIB sample processing

D Vanhecke | Adolphe Merkle Institute | University of Fribourg | Switzerland

Universal rules

chamber

Rule 1: Don't touch a control if you are not sure of the outcome of that action

Rule 2: Never, ever force anything beyond finger strength

Rule 3: Wear gloves when touching anything that goes into the

Rule 4: If in doubt, ask for help

Demonstration: STEM imaging Demonstration

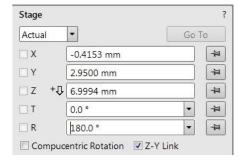
Prerequisites:

Eucentric height, beam focused, 7mm working distance

Coincidence point set

Stage tilt: 52°

Ion beam and e-beam aligned


Use the STEM detector

Experiment: Link the stage (CRUCIAL)

In the electron beam (0°)

- Proper imaging setting, magnification: sufficient (>1500 X)
- Focus on an area of interest
- Link the stage
- Go to 7 mm WD (at 0 degrees)
- Set eucentric (CTRL+F)

1. Rotate the stage 180 degrees:

	Agenda
Agenda	5
Demonstration: Login onto the FIB software	6
Demonstration: The LMIS (liquid metal ion source)	7
Demonstration: Switch the beams on	8
Demonstration: an empty LMIS?	9
Demonstration: e-beam Pt deposition	10
Demonstration: Beam coincidence point	12
Demonstration: Aligning electron and ion beam	13
Demonstration: Pt deposition with the ion beam	15
Demonstration: Patterning types	17
Demonstration: Basic milling concepts	22
Demonstration: Making a cross-section	26
Demonstration: imaging a cross-section	32
Demonstration: Measuring and making annotations	34
Demonstration: Making a cross section using EDX	35
Demonstration: STEM imaging Demonstration	36
Demonstration: Correlative microscopy (Maps 3.3)	38
Demonstration: saving data in Maps 3.3	40

Demonstration: Making a cross section using EDX

Prerequisites:

beam and e-beam aligned

Eucentric height, beam focused, 7mm working distance Coincidence point set

Produce a cross-section

that shallow layers may overlap.

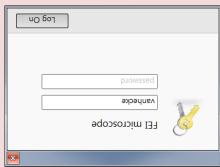
Experiment: EDX on a cross-section

- Adjust the formula for Y: $Y > 3 \times Z$ (or more). Because BSEs produce X-rays in the gap.
- Make a second bulk milling on the right side of your ROI to avoid shadowing. You will end up with an L-shaped gap (below and on the right of the ROI).
- Be careful with the interpretation: the imaging is from under an angle, which means

Demonstration: Login onto the FIB software

Prerequisites:

Running xT server Running Ul


:noitoA

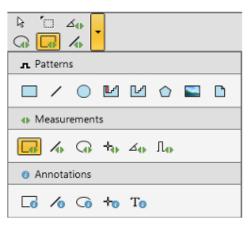
Login using your FIB account

Load the personal settings and history of the user

Experiment

After startup of the UI, a username and password are requested.

Username: your last name, with capital, no accents, umlauts, etc. Password: your first name (no capitals, accents, umlauts, etc.)


Click Log On

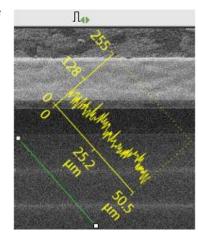
Demonstration: Measuring and making annotations

Prerequisites:

Eucentric height, beam focused, 7mm working distance Coincidence point set Ion beam and e-beam aligned

Measure lengths, surfaces, on the image using the Patterns / Measurements / Annotations

Click the down arrow to access the Patterns / Measurements / Annotations tool. The numerical values of linear distances, diameters, angles, or areas of the image are updated while drawing and shown alongside or within the finished measured item.

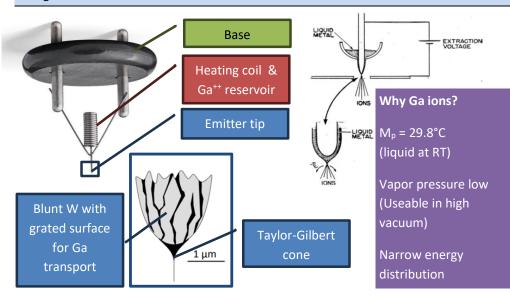

The Measurement tool dimensions scales

with the image; when

changing magnification, the shown tools change their size accordingly.

On the contrary, the Annotation shapes and texts have their sizes fixed relatively to the display. The Measurements / Intensity profile delineates the imaging profile across a freely drawn line.

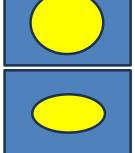
Note: to save, tick "With overlay" and save as JPG (24 bit) to keep the colours.



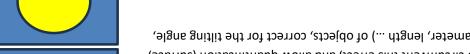
Demonstration: The LMIS (liquid metal ion source)

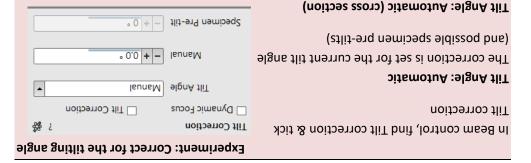
Prerequisites:

Running xT server Running UI


Background on the ion beam

Electrons	lons	
very small	Big -> outer shell reactions (no x-rays)	
inner shell reactions	High interaction probability	
High penetration depth	less penetration depth	
Low mass -> higher speed for given	High mass -> slow speed but high	
energy	Momentum -> milling!!!	
	Ions can remain trapped -> doping	
Negatively charged	Positively charged	
Magnetic lens (Lorentz force)	Electrostatic lenses	


Tilt angle correction


IsunsM :9lgnA tliT

round object (top: tilted image at 52°, bottom: original at 0°): related to the cosine of that angle (61,6%). For a perfectly At an angle of 52°, there is a vertical compression that is

diameter, length ...) of objects, correct for the tilting angle, To circumvent this effect, and allow quantification (surface,

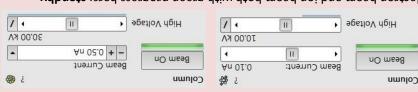
Dynamic focus The correction can be set for any tilt angle between +90° and 90°

The correction is set for a 52°tilt angle (typical cross-section angle)

the working distance for out-of-focus parts of the sample due to the tilt. The focus will change as the beam scans from top to bottom, trying to compensate for

Demonstration: Switch the beams on

Sample loaded

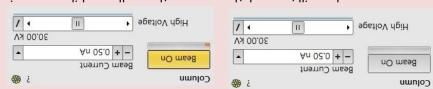

Learn to switch e-beam and ion beam on

Prerequisites:

If the system is in standby, you will find a green bar under the "Beam On"

Experiment

Repeat for the ion beam: first, click on the ion beam quadrant (top right) In the Beam control 💥 > Column. Check the bar under the button "Beam On". Select the electron beam quadrant (top left)


Click both Beam On to start the FIB Electron beam and ion beam both with green progress bars: standby.

If the system is in sleep mode, you will find a grey bar under the icon "Beam On"

Experiment

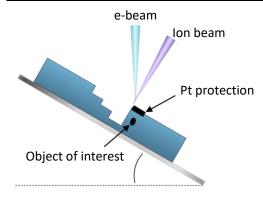
Electron beam: same as standby

Ion beam: The progress bar will be grey. Click the Beam On.

It will take about 15 minutes to start up the ion beam. The grey progress bar will turn red, then orange, then yellow, while progressing.

Demonstration: imaging a cross-section

Prerequisites:


Eucentric height, beam focused, 7mm working distance

Coincidence point set

Ion beam and e-beam aligned

Cross-section made

Now image the result of your cross-section in the e-beam

Tilt angle

Due to the tilt angle, the SEM image is not seen in an orthogonal, planar dimension.

Hence: you have to compensate for the distorted aspect ratio.

Experiment: Imaging

- Go to a very low ion beam current (10 pA)
- Switch to OptiTilt and use T1 and T2.
- Press F9
- Curtaining issues: Do not use the ETD, since curtaining is the strongest in that detector. Use T1.
- Lower beam currents: more focused Beam, but more curtaining.

Demonstration: an empty LMIS?

Prerequisites:

Sample loaded

Learn how to recognise an empty LMIS

There is no sensor for how full the Ga reservoir still is. There is no warning when it is empty. When the LMIS needs to be replaced, the following will happen:

- During heating up of the LMIS, the system remains in the orange phase, never turns green (after waiting 30 minutes or more)
- When you hover the mouse over the orange bar, you will get the lifetime of the current LMIS. An LMIS has a lifetime of 1500 to 2000 hours¹

If this situation occurs, inform the admin and cancel your session. Generally, an LMIS exchange needs about 4-10 days for exchange (depending on the availability of technical engineers).

¹ With notable ups (2700 hours) and downs (800 hours)

Undertilt

- Change the stage tilt angle for a correction factor between 0.5-1.5° (i.e. between 50.5° and 51.5° absolute angle). The higher the ion beam current, the higher the correction
- Refresh the ion beam image (F9). X and Y as above.
- Z: 1/4 of the previous setting.
- run the patterning

Overtilt

angle

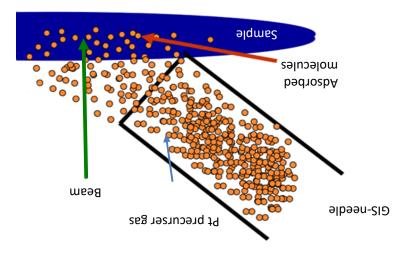
Repeat the patterning (do not change the settings), but overtilt the stage for the same factor (e.g. 53.5° if you used 50.5° before). Proceed carefully and do not evoke a pole touch!

- You can use the iSPY: this will temporarily stop the patterning, make a SEM image and continue

Demonstration: e-beam Pt deposition

Prerequisites:

Sample loaded


Electron beam on

Eucentric height, focused, WD=7mm

Learn to deposit Pt using the e-beam

Pt deposition using the e-beam marks is used to ensure a proper beam coincidence point setting if no landmarks are available.

IT IS CRITICAL TO BE AT 7 mm WD, IN FOCUS at eucentric height. If not, you risk damaging the system!!

Note: Pt deposition is usually done with the ion beam, but can also be perforned with the electron beam

Polishing

Which current to use?

Polishing is done at a lower ion beam current than the bulk mill. Typically, you start the polishing at 2 steps down the ion beam current list. E.g. if the bulk milling was done at 5nA, you start the polishing at 1 nA (jumping over 3 nA).

You may need to do the polishing iteratively (e.g. 1 nA, 0.3 nA, 50 pA).

Experiment: Polishing

- Set the ion beam current 2 steps lower (in the list) compared to bulk milling
- Place a cleaning cross-section between the Pt deposition and the edge (or a little bit over it) of the hole that the bulk milling made before.
- Height: place it just a little bit into the Pt layer. Assure that the pattern starts outside the Pt pad, and ends (=thick yellow line) inside the pad.
- Width of the section: about as wide as the Pt deposition
- Depth: same as the bulk milling setting

Start the patterning

Repeat at the same or lower beam currents (down to 50 pA), if needed.

Experiment: advanced polishing with beam shape correction

Use a rocking stage to improve the polishing. The same concept of lowering beam currents in 2 steps applies.

Experiment

Flow

Closed

Heat

Warm

Make sure your sample is at eucentric height, focused and the WD=7 mm. Hit CTRL+f Under Patterning > chose a rectangle. Set e.g. 5 μ m x 5 μ m, deposit using the Pt application (Pt e-dep surface). The rectangle has a green border

Patterning settings

- XYZ: 5μm x 5μm x 0.5μm
- 15 µs dwell time
- Application Pt e-dep surface (e-beam induced deposition)

Microscope Settings (sample depending:

- Case: Standard mode
- Magnification: 2000 X or higher
- Acceleration voltage: 5 KV
- Beam current: set until time is 3-5 minutes.

Insert the GIS needle

In the patterning tab (,), near the bottom, Gas Injection Find the Gas injection menu². Gas

- Assure the camera view is live
- Double check if you really are at 7 mm!!
- Then tick the "insert" box

You hear a soft "tick" sound, and in the camera quadrant, you see the needle

Adjust the contrast and brightness

The GIS needle absorbs a significant part of the SE signal and will darken your image.

- Press F9 to adjust Brightness and contrast
- Optional: zoom out in the SEM quadrant (below 1000X) to the the needle

Start patterning

In the top menu, click the start patterning icon During patterning, you can pause or stop the patterning

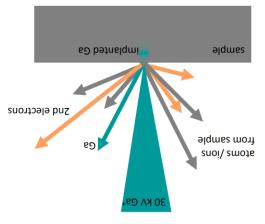
Finishing the patterning

When finished:

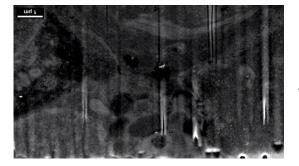
- Retract the GIS needle.
- Hit F9 to update the brightness and contrast
- Select the pattern in the quadrant and remove it (press DEL)

Note: e-beam deposition is soft and slow, iSPI is not possible

² The icon is green, Heat = warm and the flow is closed.


to adjust B/C, not F9. Note: iSPI is possible. Use the brightness/contrast buttons on the physical control panel

Ga+ beam hits substrate and yields:


- Secondary electrons
- Sputtered atoms and ions
- Implantation of Ga³
- Amorphisation/recrystallisation

3 FIBing modes happen simultaneously:

- Deposition BnilliM●
- §nigemi•

Curtaining effect

page 23). When a sample contains milling angles within the sample (see materials (e.g. porous inclusions) or in the milling rates of different surface. This occurs due to variations streaks or "curtains" on the milled refers to the formation of vertical The curtaining effect in FIB milling

rates, leading to uneven surfaces. The polishing step reduces the curtaining effect. materials with different sputtering yields, the ion beam removes material at different

D Vanhecke | Adolphe Merkle Institute | University of Fribourg | Switzerland ³ The depth of the damage layer depends on the energy of the Ga+

Demonstration: Beam coincidence point

Prerequisites:

Sample loaded

Electron beam on

Eucentric height, focused, WD=7mm

Set the beam coincidence point

coincidence point assures that the FIB beam is focused on the SEM image. A proper beam coincidence point is crucial to using the FIB beam. A proper beam

Experiment

Beam > beam shift > right click > reset Reset beam shift

Landmark definition

none, get one in the overlay, see below) Search for a landmark in your SEM image and center it at the yellow cross (if there is

- Focus, link, WD = 7mm, CTRL + f to set to eucentric height
- Magnification: around 5000 X, 5 kV, 0.4 nA

Activate the overlay crosshair

View > center cross (or shift + F5)

Tilt the stage

- central position, either by: - Tilt the stage to about 5°. Watch the landmark move up or down. Bring it back to ints
- → In the CCD quadrant (Bottom right): hold the middle mouse button.
- Iterate over 5-10° steps until you reach 52°. Keep an eye on the stage in the chamber → move the mouse down/up to move the landmark accordingly.
- view: do not touch the pole piece with the sample!

The intensity of the signal will increase as tilt increases. Also: try CTRL + e and CTRL + i

D Vanhecke | Adolphe Merkle Institute | University of Fribourg | Switzerland

- select Pt dep (not Si) in the application
- calculate the Ga current required using the magic number 6 (pA/μm2).

Current
$$(pA) = X(\mu m) \cdot Y(\mu m) \cdot 6 \left(\frac{pA}{\mu m^2}\right)$$

- * e.g. $10 \mu m \times 4 \mu m \times 6 = 240 pA$
- * Use this value and chose the closest current for the Ga beam

too much current and you will mill instead of deposit Too less current will destroy your vacuum 6 is the magic number!

- You should get a time round 3-5 minutes
- Insert the Pt GIS
- Press F9 in the ion image (this will contrast/brightness correct and take a snapshot). Make sure you have the ETD selected
- Check the position of the rectangle, overlay the e-beam deposited marker.
- Run the deposition
- retract the GIS needle
 - Milling

Experiment: Bulk mill

- Use the regular cross-section (RCS) pattern.
- Position it just below the Pt deposition you just made, and a bit wider than the Pt deposition pad (about 10%), exactly touching the Pt above it. The pattern is yellow
- Application: Si multipass (4 passes)
- Determine/decide on the depth (e.g. 5 μ m)
- Calculate the Y, with at least Y > 2 times Z. If you intend to do EDX, a factor of 3 is at least needed.
- Pick a Ga ion beam current to mill between 2-5 minutes
- Check your SEM image before you start the milling. F9 to adjust brightness contrast
- Start the patterning (\lambda,)

Demonstration: Aligning electron and ion beam

Prerequisites:

Sample loaded

Electron beam on

Eucentric height, beam focused, 7mm working distance

Coincidence point set

Find where the ion beam and the electron beam meet

Important notice:

The ion beam will destroy your sample surface (unless it is protected by layers of Pt).

Do not continuously image with an ion beam!

Use low currents for imaging! (30 pA or lower)

Use a single image only (no continuous scans)

Experiment

Align the FIB image

- Image with the Ga ion beam:
 - Use a low beam current (10 pA or about), 30 kV
 - Zoom out to a magnification below what you had in the electron beam.
 - Press CTRL + f. Assure the working distance is 19 mm
 - Press F9
 - Assure you have low current, dwell times below 1 μ s, live camera settings. Then press F6 and press F6 immediately again (will record 1 image)
 - Find an object that is present in both the electron image and the ion image.

- Microscope settings (will obviously vary depending on the sample)
- * Standard mode
- * 2000 X (or higher)
- * 2 KV
- * 1.6 nA beam current (to start with, see below)
- Patterning settings:
- * set X, Y: 20µm x 2µm
- mn 002 = 5 *
- * Set the current to get a estimate time of 5-7 minutes
- Click start patterning

Note: e- beam deposition is slow, iSPI is not possible

- retract the GIS needle. Hit F9. remove the pattern.

A proper beam coincidence point is crucial to use the FIB beam. A proper beam coincidence point assures that the FIB beam is focused on the SEM image.

Experiment: set up the beam-coincidence point

Set the BCP. You may use the deposition from the step before as a marker.

CTRL + i (will tilt to 52° - ion beam)

CTRL + e (will tilt to 0° – electron beam)

Align the e-beam to the ion beam precisely.

Protecting your object of interest

Experiment: ion beam Pt deposition (MANDATORY)

Pt deposition with the Ga ion beam (in the Ga ion image)

- First glance: Do not make an image with the Ga ion beam!
- Draw a rectangle in the Ga ion image with the patterning tool (e.g. 20µm x 2µm)
- md 1 tuode =s -

D Vanhecke | Adolphe Merkle Institute | University of Fribourg | Switzerland

If the same object is not in the middle (use the center cross):

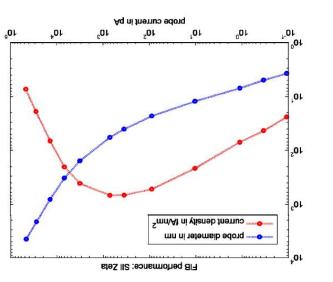
- Use beam shift XY to put it in the middle of the lon beam image:

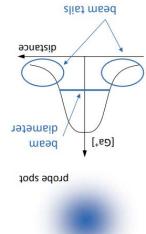
1. Open the beam control. Watch the Beam shift module

2. Grab the object/landmark with LMB while holding shift. The mouse icon will

change into a hand with a blue sleeve.

3. Move the mouse (holding shift and LMB) to the center cross. The marker in the beam shift module should not reach the borders of the control. The image


will not change.


4. Release the mouse

Alternatively, use the shift XY buttons on the physical control panel below the central screen. Note that here you will need a live ion image. switch off the FIB imaging as soon

as the landmark is aligned (you are milling away your sample).

Setting: couple magnifications to OFF

Small current -> narrow beam

D Vanhecke | Adolphe Merkle Institute | University of Fribourg | Switzerland

Demonstration: Making a cross-section

Prerequisites:

Eucentric height, beam focused, 7mm working distance Coincidence point set

Ion beam and e-beam aligned

Produce a cross section

Preparation

The settings used here are generic and should be seen as a starting point for developing the settings needed for your specific application and/or sample.

Experiment: preparation

In the electron beam (0°)

- Proper imaging setting, magnification: sufficient (1500+ X)
- Focus on the region
- Link the stage
- Go to 7 mm WD (at 0 degrees)
- Set eucentric (CTRL+F)

Make 100% sure you are in focus, eucentric and at 7mm. Incorrect settings will damage the instrument

(Optional) Experiment: Protect the ROI using e-beam Pt deposition

- Insert the GIS needle
 - * If it drops a shadow on your image: Press F9
 - * If the needle is visible, increase magnification
- Select a rectangle and draw a pattern in the e-beam quadrant.
- As an application, choose Pt_ebid (electron beam induced deposition). The rectangle should be green

Demonstration: Pt deposition with the ion beam

Prerequisites:

Sample loaded

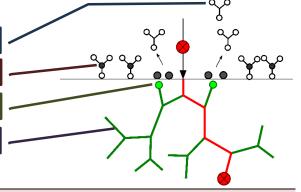
Electron beam on

Eucentric height, beam focused, 7mm working distance

Coincidence point set

Stage tilt: 52°

Deposit Pt with the ion beam


The Collision cascade model

Desorbed reaction products

Absorbed molecules

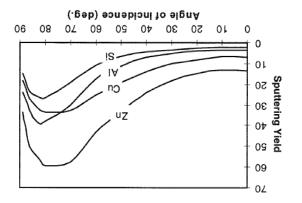
Excited surface atoms

path dislocated substrate atoms

Experiment

Patterning settings

- Choose a rectangle (easiest)
- XYZ: XY, usually < 20, Z usually between 0.1 and 1 μm
- Application: Pt dep


Microscope settings:

- Magnification: 2000 X or higher (Standard mode, ETD detector)
- Ion acceleration voltage: 30 KV
- Beam current: CALCULATE! Using this formula:

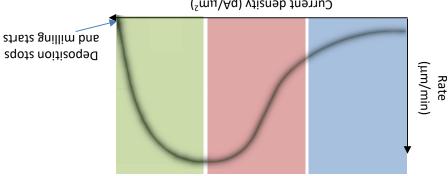
Current
$$(pA) = X(\mu m) \cdot Y(\mu m) \cdot 6 \left(\frac{pA}{\mu m^2}\right)$$

Sputter yield depends on target material

the Mohs scale. sputter rates are not a function of sputtered by the Ga ion beam. The material has a tendency to get soft, diamond is hard), each hardness of solids (graphene = Similar to the Mohs scale of

conditions. Hence, crystalline structures will not mill to a flat surface. Crystalline structures will cause channeling of the ions depending on the Bragg

Sputter rate (μm³ /nC)	Material
67.0	БŦ
0.14	!N
0.25	nე
21.0	οM
28.0	εТ
21.0	M
ST:0	OgM
ST:0	OiT
0.25	Fe ₂ O ₃
0.23	₽d
04.0	AMMq


AI 0.24 AI 0.3 AI 0.	Sputter rate (µm³ /nC)	Material
0.3 0.3	72.0	!S
63AS 0.08 63AS 0.61 63AS 0.61 63AS 0.20 633V 6.37 6.37 7.50	42.0	TEOS
130	5.0	IΑ
1.20 Δυ 1.50 1	80.0	εO _s IA
Au 1.50 ΓίΝ 0.15 Γίν 0.18 Τίν 0.37 Τί 0.37	19.0	sA6D
TiN 0.15 0.20 0.28 0.37 TiN 0.37	1.20	dul
0.20 μνείδ 0.37 ο.37 17 ο.37	1.50	n∀
0.18 75.0 ii	21.0	N:T
Υ Ε.0 iT	0.20	ħΝ ^ε !S
	81.0	Э
Cr 0.10	75.0	İT
	01.0	Cr

Example: a 2 μ m x 3 μ m rectangle \rightarrow 6 x 2 x 3 = 36 pA (actual value: 30 pA) Example: a 20 µm x 20 µm rectangle \rightarrow 6 x 20 x 20 = 2400 pA (actual value: 3 nA)

Choose the ion beam current to be as close as possible to the calculated value

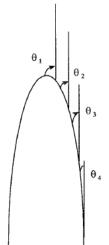
Where $X = \text{width of the pattern in } \mu m$, $Y = \text{height of the pattern in } \mu m$.

hole in your object. Failing to choose the correct beam current will either ruin your vacuum or create a

Current density (pA/µm²)

High-efficiency deposition per ion

- Ion dose on each pass does not decompose all gas
- Slow layer growth rate, Long deposition time
- Excess gas may affect vacuum

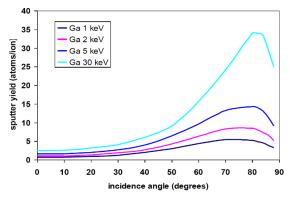

High-efficiency growth rate

²m4/Aq 3-2

- Each beam scan uses up nearly all precursor gas
- Fastest layer growth rate

Milling effects

Remaining ions sputter / mill the surface All gas is used up by only part of ion dose


Asperities on a surface will be FIB milled at different rates due to topographic effects on milling. The topographic effects will grow and exacerbate as FIB milling continues.

This is why surfaces are "never" FIB milled from top-down, but rather, are created by FIB milling at high incident angles.

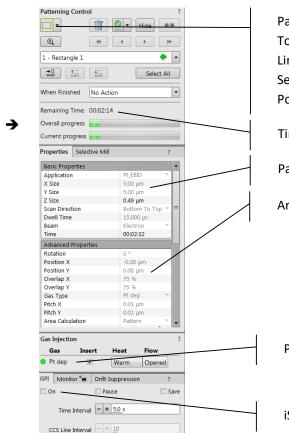
See also page 29, Curtaining effect.

$$\theta_1 \neq \theta_2 \neq \theta_2 \neq \theta_4$$

• Sputter yield depends on ion acceleration voltage

30 keV is the maximum voltage of the ion gun. Always use 30 kV, unless clearly mentioned otherwise.

Demonstration: Patterning types


Prerequisites:

Sample loaded

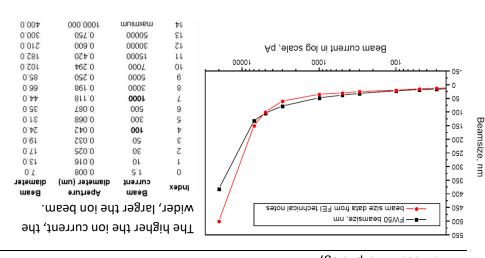
Electron beam on

Eucentric height, focused, WD=7mm, either at 0° or 52°

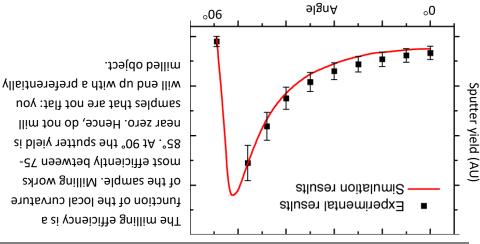
Information of the different pattering types

Pattern type selector (see Toolbar icons also): Rectangle / Line / Circle / Cleaning Cross Section / Regular Cross Section / Polygon / Bitmap / Stream File

Time indicator


Pattern size settings

Array settings, passes, ...


Pt Deposition

iSPI: imaging during deposition

lon beam morphology

Sputter yield depends on sputter angle

Pattern types

Patterns are automatically assigned to one or more particular processes, distinguishable by a different cross-hatch.

- Rectangle / Line / Circle / Polygon pattern: both milling and deposition.
- Cleaning Cross Section: milling line by line (each line with set number of passes).
- Regular Cross Section: has two possibilities selectable in the Property editor:
- Multipass processes entire pattern and starts again
 Stairstep the pattern is created as a compilation of five rectangles with
- specified overlap between them. Each one is processed with the set number of passes.
- The Bitmap pattern enables importing bitmaps as a pattern. It must be 24 bit RGB bitmap, each pixel consists of:
- Red component actually not used
- Green component determines if the beam is blanked.
- Any value other than 0 activates the beam
- Blue component determines the dwell time per pixel:

Serial vs parallel patterning

This is the default patterning mode. All patterns defined on the screen are processed consecutively; milling/deposition is completed on one pattern before moving to the next one. Serial patterning is always used with cleaning cross-section milling.

All patterns defined on the screen are processed concurrently; one pass of the beam is completed on all patterns before moving to the second pass. Parallel patterning is typically used to avoid the redeposition of material on the adjacent areas.

Demonstration: Basic milling concepts

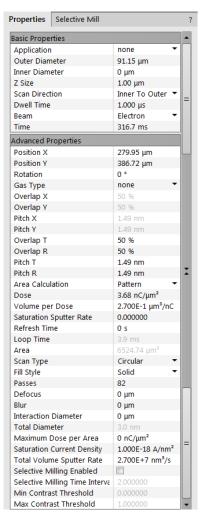
Prerequisites:

Sample loaded

Electron beam on

Eucentric height, focused, WD=7mm

Beam coincidence point set


Milling practicalities

Ions version electrons

		FIB	SEM	Ratio
Particle	type	Ga+ ion	electron	
	elementary charge	+1	-1	
	particle size	0.2 nm	0.00001 nm	20.000
	mass	1.2 .10 ⁻²⁵ kg	9.1.10 ⁻³¹ kg	130.000
	velocity at 30 kV	2.8.10 ^s m/s	1.0 10 ⁸ m/s	0.0028
	velocity at 2 kV	7.3.10 ⁴ m/s	2.6.10 ⁷ m/s	0.0028
	momentum at 30 kV	3.4.10 ⁻²⁰ kgm/s	9.1.10 ⁻²³ kgm/s	370
	momentum at 2 kV	8.8.10 ⁻²¹ kgm/s	2.4.10 ⁻²³ kgm/s	370
Beam	size	nm range	nm range	
	energy	up to 30 kV	up to 30 kV	
	current	pA to nA range	pA to uA range	
Penetration depth	In polymer at 30 kV	60 nm	12000 nm	
	In polymer at 2 kV	12 nm	100 nm	
	In iron at 30 kV	20 nm	1800 nm	
	In iron at 2 kV	4 nm	25 nm	
Average electrons	secondary electrons	100 - 200	50 - 75	
signal per 100				
particles at 20 kV	back scattered electron	0	30 - 50	
	substrate atom	500	0	
	secondary ion	30	0	
	x-ray	0	0.7	

Pattern properties

A pattern can have many associated parameters, which can be set via the Property module:

Application

Clicking on the value slot enables a down arrow, bringing a drop-down list of applications. Choosing the required one sets the subsequent properties.

X/Y/Z size

Dimensions of the pattern

Scan Direction

Scan movement direction (Bottom to Top; Top to Bottom)

Dwell Time

A time the beam spends on a single pixel per pass (rounded to a multiple of 25 ns).

Beam

The beam used for patterning

Time

required to process this pattern. Calculated from the different parameters

Rotation

Rotation of the patterns (the positive direction is clockwise)

(λιμο OverlapX/Y and PitchX/Y values (read

higher rate (actually not used) current density, allowing a temporary at a higher rate than the saturation allowing a certain dose to be deposited describes the adsorbed gas layer, Maximum Dose per Area

(actually not used) saturation sputter rate is reached The current at which 63% of the Saturation Current Density

deposited (actually not used) at which material is removed or Total Volume Sputter Rate - the speed

grey level histogram (only the ion

button reads the pattern area's

Selects pixels to be milled based

on their grey level. The scan

sample surface below (negative/positive value) the Calculation. It allows focusing above \ Influences the Total Diameter and Area

(additional) diameter of the blurred Like Defocus, but specifying the Blur

swall beam Interaction Diameter for an infinitely

Influences the Total diameter

Max Contrast Threshold items

2 0.2 + - levietni

Properties Selective Mill

Selective milling

and interaction diameter influences the The combination of the beam diameter

10ds

Total Diameter

given gas. For Gas = None this is 0 The maximum linear sputter rate for a Saturation Sputter Rate

(actually not used).

that the adsorbed gas can be refreshed least elapse before the next pass, so The minimum loop time that must at Refresh Time

(λιμο The time required for a single pass (read Loop Time

(ʎjuo The surface area of the pattern (read **Area**

to the left starting point from left to right, then the beam returns from right to left, while the Raster scans proceeds from left to right and back the Serpentine means the beam ScanType

types only) (area) or just a frame (box and circular One can choose either to mill a solid Fill Style

pattern The number of beam scans over the Passes

Defocus of the beam (WD change)

Y \ X noitiso9

origin (the display center) Position of the pattern relative to the

Overlap X / Y

Area Calculation and the Dose. The overlap parameter influences the depending on a particular application. (=array) or negative (=overlapping) value of the overlap can be positive Sets the beam diameter overlap. The

Pt deposition). onscreen (yellow for milling, green for This determines the pattern color pattern (or None if no gas is to be used). the gas to be used to process the Gas Type

Alternative to overlap. Sets the pitch between two spots. Y \ X dəfiq

accurate value of the Dose. This value is calculated in order to get the most Defines how the patterning area will be Area Calculation

negative overlaps. (default) / Array is set for positive / related to the Overlap X/Y. The Pattern

The volume of material that is removed Volume per Dose

ber charge

D Vanhecke | Adolphe Merkle Institute | University of Fribourg | Switzerland

adjuster / left / right border of the grey level to be processed for the selected pattern.

Selective Milling Enabled / Selective Milling Time Interval / Min Contrast Threshold /

Correspond to the Selective Mill tab module elements: Enabled check box / Interval

.(9gemi