

Introduction to ImageJ Session 4: 3D

Dimitri Vanhecke

adolphe merkle institute excellence in pure and applied nanoscience

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

www.nature.com/nmeth / March 2025 Vol.22 No. 3

nature methods

Segment Anything for Microscopy

nature methods

9

Article

https://doi.org/10.1038/s41592-024-02580-4

Segment Anything for Microscopy

Received: 21 August 2023	Anwai Archit 🕲 1, Luca Freckmann ¹ , Sushmita Nair ¹ , Nabeel Khalid 🕲		
Accepted: 26 November 2024	Paul Hilt°, Vikas Rajashekar², Marei Freitag ♥', Carolin Teuber ♥', Genevieve Buckley ♥ ⁴ , Sebastian von Haaren⁵, Sagnik Gupta ¹ ,		
Published online: 12 February 2025	Andreas Dengel ^{2,3} , Sheraz Ahmed ² & Constantin Pape ^{® 1}		

Check for updates

Accurate segmentation of objects in microscopy images remains a bottleneck for many researchers despite the number of tools developed for this purpose. Here, we present Segment Anything for Microscopy (µSAM), a tool for segmentation and tracking in multidimensional microscopy data. It is based on Segment Anything, a vision foundation model for image segmentation. We extend it by fine-tuning generalist models for light and electron microscopy that clearly improve segmentation quality for a wide range of imaging conditions. We also implement interactive and automatic segmentation in a napari plugin that can speed up diverse segmentation tasks and provides a unified solution for microscopy annotation across different microscopy modalities. Our work constitutes the application of vision foundation models in microscopy, laying the groundwork for solving image analysis tasks in this domain with a small set of powerful deep learning models.

Going digital – what is a digital image?

A digital image is an ordered rectangular array (or grid) of **integers (numbers: 0,1,2,3...)**. Each element (=number) in the grid is also known as a picture element or 'Pixel'

1 dimensional array

2 dimensional array

1					
157	144	167	188	201	191
185	191	195	188	188	19(
193	195	195	191	189	171
173	170	181	192	194	194
210	214	206	202	203	20
237	224	221	230	232	22!
183	180	190	188	192	18
178	170	159	187	195	189
167	164	170	186	192	18;
159	162	164	184	170	16(
180	172	165	172	185	17!
193	180	196	195	185	17:
167	184	182	183	180	17!
195	191	182	189	195	18!
183	188	184	183	174	169
101	106	105	170	100	4.01

3D array (= volume stack or video/Timelapse

Filters, point operators, ... and stacks

Upon running a function over a stack, you will often get a question:

Hence, all

- Filters
- Bandpass filters
- Point operators
- Binary functions
- etc...

Are also valid for stacks

Sobel filter on RGB Lena

Stacks

Prerequisites

- All the slices in a stack must be the same size
 (X,Y) and bit depth.
- The slice thickness is considered constant (Z)

Type of stacks

- 1. 2D images with **encoded Z information** (e.g. AFM)
- 2. Channels (or layers) are multiple images stored within one file. Typically, they contain different color absorption functions of the same object
- **3. Z layers** are images recorded at different depth positions through the object
- 4. Time lapse are images recorded at a different time point
- Custom multi-dimensional datasets (n>3). E.g. Hyperstacks, Raman maps and hyperspectral maps

Stacks

3D array (= volume stack or video

Height maps

Gwyddion Open SPM (AFM, SNOM/NSOM, STM, MFM, ...) data analysis software

e.g. AFM height maps

- 2D image
- Pixel value = height = height map

3D Map (XY view, transformed height map) XZ view (10X)

Data by Gwendolyn Delepierre

2. Channels

Pseudo-color

= a single channel (grayscale) equipped with a LUT

Mode: 201 (3164)

RGB images (24 bit=3x8bit) 3 layers, reflecting the natural red, green and blue colors (or HSL, CMYK, HSV, ...)

Mean: 71.655 Max: 248 StdDev: 58.251 Mode: 8 (2137)

Composite images (flexible: e.g. 5x16bit) n layers, separated. For example LSM multi channel data

UNIVERSITÉ DE FRIBOURG UNIVERSITÄT FREIBURG

Г

2. Channels: Pseudo-color (Lookup tables (LUTs))

- Image = 2D array of numbers
- "Grayscale" Lookup table = a means to giving a graphical meaning to these numbers.
- But "Grayscale" is just one of these Lookup tables!
- Image > Look-up table (not for RGB images)

Look-up tables = dictionary in Python

2. Channels: Lookup tables (LUTs)

2. Channels: composite images

Channels tool

Composite	innels	Image > Color >	Channels tool
Channel	Color Grayscale	Composite:	overlaying the layers of choice (also for RGB images)
Channel :	3	Color:	showing only one layer, with LUT. Change the LUT of the selected layer
Channel		Grayscale:	showing only one layer, in grayscale LUT
More	Convert to RGB Split Channels Merge Channels	(Clicking on the ch	annel selector = use the channel scrollbar below the image)
	Edit LUT	Make composite:	splits the color image in its layers
	Red Green Blue	Convert to RGB:	joins the layers into a 2D RGB image (you will end up with 1 window)

Split channels:makes n windows of each channelMerge channels:Tool to put n single channels together into a composite stack

😣 🗊 Merge Channels

Cl (red):	Cl (red): Cl-confocal-series.tif 🗆					
C2 (green):	C2-confocal-series.tif \Box					
C3 (blue):	*None* 🗆					
C4 (g ray):	*None* 🗆					
C5 (cyan):	*None* 🗆					
C6 (magenta):	*None* 🗆					
C7 (yellow): *None* 💷						
🛙 Create composite						
∐Keep source images						
Lianore source LUTs						

OK

Cancel

Cyan

Image > Color > Merge Channels

Combines n images into a composite image

- Prerequisite: all images have the same size (width, heigth and bitdepth)
- Choose the LUT (color)
- Once merged: check the "Arrange" menu entry (Image > color > Arrange...)

Channels: split, arrange, and merge

Convert to Composite

Convert a color image to a composite image (Image > color > channels tool: More > make composite)

Split a composite dataset in its grayscale components

Split the three channels (Channels tool: More > split channels)

Optional: change the LUT of each of the grayscale components

Change LUTs if required (Image Lookup tables)

Merge channels

Merge the channels again to an RGB image (Image > color > Merge channels OR Channels tool: more > merge channels)

Change the order of the grayscale channels in the composite dataset

Arrange: Change the order of the layers in the stack (Image > color > Arrange Channels...)

Channels tool: example RGB image

Channels tool: example RGB image

Green

More »

Blue

Cyan

□Keep source images

□Ignore source LUTs

Cancel

ОК

00

C1-clown.jpg (RGB)

320x200 pixels; 8-bit; 62K

00

3. Z-stacks

...

1. One file including the entire Z-stack Native: TIFF Non-Native

- lsm (Zeiss): Use LSM toolbox
- lif (Leica): Use Bio-Formats plugin

2. Sequence = a number of 2D images (same XY size, same bitdepth) in a single folder

🎒 Impo	rt Image Sequence	File > Import > Image Sequence
Dir:	Z:\Data\Microscopy\Dimitri\Teaching\ImageJ course\ImageJ basics\ Browse drag and drop target	Enter or browse the folder path
Type: Filter:	default 💌	
	enclose regex in parens	
Start:	1	
Count	62	Possibility to reduce the stack
Step:	1	,
Scale:	100 %	
⊮ s	ort names numerically	
ΠU	se virtual stack	Import options
Г 0	pen as separate images	1 1
	OK Cancel Help	

Opening sequences

EXERCISE

Open Example 2 (the folder) and import the sequence

Dir:	Z:\Data\Microscopy\Dimitri\Teaching\ImageJ course\ImageJ basics\	Browse
	drag and drop target	
Type:	default 💌	
Filter:		
	enclose regex in parens	
Start:	1	
Count	62	
Step:	1	
Scale:	100 %	
	ortnames numerically	
	lse virtual stack	
	ipen as separate images	
	OK Cancel	Help

All images must have the same size! (X, Y and bitdepth!) Watch out for **OS generated thumbnail files**

Possibility to open as virtual stack

File > Import > Image Sequence

- Locate the folder
- (you do not see the actual files in the folder)
- Regex Filter: allows filename filtering (e.g. tif will only include files that have tif in the filename)

Opening sequences

EXERCISE Open Example 2 (the folder) and import the sequence

1/124 (Data000); 128x107 pixels; 8-bit; 1.6MB

Stack of 124 Slices, now looking at slice 1 X = 128 Y = 107 Z = 124

Works exactly the same if you would have opened a multi-image file (eg. Tiff)

What is the difference between TIF and TIFF?

Move through the stack

Operations on Z-stacks

Image > stacks	Add Slice, Delete Slice, Next Slice, Previous Slice, Set Slice			
Image > Stacks > Make montage	Produces a single grid-image containing the individual images that compose stacks and hyperstacks			
Image > stacks > Stacks to Images Image > stacks > Images to Stacks	Releases the n images in the one stack window into n windows (watch out with large stacks!) Takes all open Images and puts them into 1 stack. Regex filter possible.			
Image > Stacks > Z project Image > Stacks > 3D project	Projects the entire stack onto a 2D image Maximum intensity projection of the stack			
Image > Stack > ToolsCombine, Reduce, Make substack,Image > Stacks >Tools > Grouped Z projectOutput: a new stack, but with each slice the average/max/sum or each group				

Z-Stacks: Extended depth of field

IN RESEARCH

Montage tool

EXERCISE

Try out the tools in the Images > Stack menu and with Example 2

Open a stack, then: Image > stack > Make montage...

IN RESEARCH

UNIVERSITÉ DE FRIBOURG

UNIVERSITÄT FREIBURG

Z-Stacks: Reslice (orthogonal rotation)

FR UNIVERSITÉ DE FRIBOURG UNIVERSITÄT FREIBURG

4. Hyperstacks

Hyperstacks are multidimensional images, extending image stacks to four (4D) or five (5D) dimensions:

- x (width),
- y (height),
- z (slices),
- c (channels or wavelengths)
- t (time frames)

Hyperstacks are displayed in a window with 2 or 3 labelled scrollbars. Similarly to the scrollbar in stacks, including a play/pause icon.

Hyperstacks

	Channels	×
Cor	nposite _	L
N	Channel 1	
	Channel 2	
R	Channel 3	
×	Channel 4	
ŀ	Help More »	

	Channels ×
C	omposite 💷
	Channel 1
	Channel 2
×	Channel 3
×	Channel 4
	Help More »

	Channels	×	
Con	nposite 🗆		
	Channel 1		
Channel 2			
🗆 Channel 3			
R	Channel 4		
F	lelp More »		

Videos/timelapse

Out of the box, ImageJ has limited support (no codecs, no audio). However, it can open/close uncompressed AVI formats.

Videos/timelapse Can be understood as a 3D stack where the third dimension is not spatial but temporal

5. Custom multi-dimensional datasets

6. Virtual stacks

- Virtual stacks are disk resident (as opposed to RAM resident) datasets

- The only way to load image sequences that do not fit in your RAM.

1. Virtual stacks are read-only, so changes made to the pixel data are not saved when you switch to a different slice

2. Commands like Crop [X] may create a RAM issue since any stack generated from commands that do not generate virtual stacks will be RAM resident.

Edit > options >memory & threads will allow you to change the RAM allocated

Note on non-isometric data (LSM, FIB, ...)

When the axial resolution (in Z) is not the same as the spatial resolution (in XY): Image > Properties

Original data	
🕌 A549_PCL200.tif	×
Channels (c): 1 Slices (z): 49 Frames (t): 1 Note: c*z*t must equal 49	
Pixel width: 0.3603982 Pixel height: 0.3603982 Voxel depth: 0.6059463	micron -
Frame interval: 0 sec Origin (pixels): 0,0,0	
☐ Invert Y coordinates ☐ Global	
ок	Cancel

Prerequisites:

- **binary images** (see lecture III of this series)
- Proper axial and spatial resolution set (Image > Properties)

β	fter segme	entation	(from	iLa	stik)
	🛓 A549_PCL200	-t0-channel0_S	imple Se	×	
	Channels (c): Slices (z):	1 49			
	Frames (t):	1			
	Note: c*z*t mus	t equal 49			
	Pixel width: Pixel height: Voxel depth:	1.0000 1.0000 1.0000	pixel - -		
	Frame interval: Origin (pixels):	0 sec 0,0,0			
	☐ Invert Y co ☐ Global	ordinates			
		Ok	Cance	el	

PIRED

F COMPETENCE

ALS

3D Objects counter

Analyze > 3D OC options

Allows to set the Measurements that will be performed

3D-OC Set Measurements

Parameters to calculate:

	Volume	✓ Surface				
	🔽 Nb of Obj. voxels	Vb of Surf. voxels				
	Integrated Density	🔽 Mean Gray Value				
	🔽 Std Dev Gray Value	🔽 Median Gray Value				
	🔽 Minimum Gray Value	🔽 Maximum Gray Value				
	Centroid	🔽 Mean distance to surface				
	🔽 Std Dev distance to surface	🗹 Median distance to surface				
	Centre of mass	Bounding box				
1						
	Image parameters:					
	Close original images while processing (saves memory)					
	Show masked image (redirection requiered)					

•

3D Objects counter

Analyze > 3D Objects Counter Similar to 'Measure particles', but: Threshold is asked

UNIVERSITÄT FREIBUR

3D Objects counter: Output

Solutances

3D Objects counter: Output

	Statistics for A549_PCL200-t0-channel0_Simple Segmentation Stage 2-1.tiff							_							
File Edit Font															
	Volume (micron^3)	Surface (micron^2)	Nb of obj. voxels	Nb of surf. voxels	IntDen	Mean	StdDe∨	Median	Min	Max	X	Y	Z	Mean dist. to surf. (micron)	SE
	1408.099	1201.742	17891	3974	4562205	255	0	255	255	255	382.541	60.942	35.786	7.534	2.4
	2118.878	1497.572	26922	6070	6865110	255	0	255	255	255	197.877	89.038	33.429	9.103	:3.:
	647.894	585.138	8232	2013	2099160	255	0	255	255	255	155.839	63.630	34.102	5.357	1.3
	643.565	558.641	8177	2092	2085135	255	0	255	255	255	172.481	142.474	33.814	5.120	10.9
	697.950	649.447	8868	2294	2261340	255	0	255	255	255	151.261	37.186	36.641	5.656	1.(
	1707.412	1195.269	21694	4806	5531970	255	0	255	255	255	250.222	80.860	36.413	7.609	:2.:
	747.534	633.551	9498	2437	2421990	255	0	255	255	255	195.318	34.086	36.335	5.452	1.
	1255.649	993.930	15954	3658	4068270	255	0	255	255	255	96.251	102.124	37.521	6.826	:2.0
	682.367	581.667	8670	2050	2210850	255	0	255	255	255	148.327	164.184	36.652	5.336	1.0
	1001.277	758.804	12722	3025	3244110	255	0	255	255	255	198.978	170.228	37.802	6.027	1.4
	598.783	537.068	7608	1945	1940040	255	0	255	255	255	162.643	195.234	39.588	5.080	1.
	644.431	582.112	8188	2171	2087940	255	0	255	255	255	234.675	177.968	41.452	5.394	1.

3D Objects counter

EXERCISE

Open Example 7 and calculate the volume of the objects using the 3D object counter.

1. Check calibration

2. Do the analysis

3. Change the settings and repeat

Image > Properties... (for 3D spatial and axial settings) Analysis > 3D object counter Analysis > 3D OC settings

3D suite (plugin)

Help > Update > Plugins > 3D suite	🗹 3D Ima		
Analysis	•		
Binary	•		

Filters

Relationship

Segmentation

3D Manager

Spatial

Tools

3D Manager V4 (testing)

3D Manager V4 Macros

3D Manager Options

🗹 3D ImageJ Suite

×

۲

×

٠

٠

https://sites.imagej.net/Tboudier/

- See next slide
- (Morphological) filters in 3D
- Local Linear filters in 3D
- Measuring distances (e.g. border to border)
- Binary segmentation tools (e.g. 3D watershed)

(experimental)

(scripting)

ROI 3D manager (see next)

3D suite (plugin)

		Input
•	3D Intensity Measure	Raw data and binary mask
•	3D Centroid	Binary mask
	3D Volume	Binary mask
	3D Surface	Binary mask
•	3D Distance Contour	Binary mask
	3D Feret	Binary mask
	3D Compactness	Binary mask
	3D Ellipsoid measure	Binary mask
	3D RDAR	Binary mask
•	3D Mesh Measure (slow)	Binary mask
•	3D Ellipsoid Fitting	Binary mask
	3D Convex Hull (slow)	Binary mask

Output

Intensity stats of each object

Position of centroid of each object (X,Y,Z) Volume of each object Surface of each object Distance stats between center and shell Caliper distances in 3D and ortho-planes Sphericity and 3D compactness Goodness of fit measurements Ellipsoid: how much is sticking out

Fitting measures to elliposoid 3D convex hull

3D suite (plugin)

ROI3D manager

1. 3D segment (use binary Data!!)

you get a new window with your objects in different shades

2. Add an image

this adds the objects

3D suite (plugin)

ROI3D manager

💷 RoiManager3D 4.1.0		— C
obj40-val40	3D Segmentat	tion Add Image
obj41-val41		
obj42-val42		
obj43-val43	Rename	Delete Erase
obj44-val44		
obj45-val45	Merge	Split in two
obj46-val46		
obj47-val47	Measure 2D	Ouantif 2D
obj48-val48	Inteasure 5D	Quantil SD
obj49-val49	Distances	Angles
obj50-val50	Calculiention	List Vauala
obj51-val51	Colocalisation	List voxels
obj52-val52		
obj53-val53		
obj54-val54	20.10	En en l
obj55-val55	3D Viewer	Fill Stack
obj56-val56	Select All	Deselect
obj57-val57		
obj58-val58	Live Ko	Label
obj59-val59		
obj35-val35-split1		X 🚹
obj35-val35-split2		

- 1. 3D segment (use binary Data!!)
- 2. Add an image
- 3. Click "Live ROI: OFF" (makes it "ON")
- 4. From the list, select obj35-val35
- 5. Then click "split in two"

3D suite (plugin)

EXERCISE

Open Example 7 and calculate the volume of the objects using the 3D manager of 3D suite. Try to split some objects in the 3D suite

Image > Properties... (for 3D spatial and axial settings) Analysis > 3D object counter (and 3D OC settings) Plugins > 3D suite > 3D manager

- Segmentation
- Add image

Visualizing 3D data

- 1. 2D depictions
- 2. Renderings
 - 1. Surface rendering
 - 2. Volume rendering

Visualizing 3D data: Depth encoded

(= depth coded, Fire LUT)

Visualizing 3D data: Orthogonal views and depth coding

EXERCISE Open Example 3.

Try both:

Depth-encoded Color Image > Hyperstacks > Temporal color-code / choose a LUT (e.g. Grays)

Orthogonal views Image > stack > orthogonal views

Visualizing 3D data: Orthogonal views

Orthogonal views

The intersection point of the three views follows the location of the mouse click and can be controlled by clicking and dragging in either the XY, XZ or YZ view.

XY and XZ coordinates are displayed in the title of the projection panels. The mouse wheel changes the screen plane in all three views.

How to get rid of the marker lines? Image > Overlay > hide overlay (or remove overlay)

3D rendering

Note: renderings require **interpretation** by the user. Hence, they are the convolution of the raw scientific data and the feature the user would like to see.

- **1.** Surface rendering
 - = binary threshold-based
- 2. Volume rendering
 - = percentage threshold-based

Never publish only renderings. Always provide the raw data (i.e. orthogonal views)

Surface rendering: Isosurfaces

Isosurface

A three-dimensional analogue of an isoline. It is a surface that represents points of a constant value within a volume.

Step 1: Creating an isoline by thresholdingStep 2: voxels to mesh by marching cubesStep 3: Mesh to rendering through shaders

Isosurfaces: Step 1: Thresholding the voxels

Binary

Threshold = 83

Edge only = isoline

A threshold is calculated

- Pixel value > threshold, the voxel is considered to contain the signal (=object).
- Pixel value < threshold, the voxel is considered not to contain the signal (=background).
- This classification system is binary; it defines each voxel as containing either 100% or 0% of the signal
- Once classified, a surface is defined as the boundary between the pixels (=isoline)

Isosurfaces: Step 2: Isoline/Voxel to mesh conversion

Isosurfaces: Step 2: Voxel to mesh conversion

Intensities -> Binary -> 64 predefined values / marching cubes

Isosurfaces: Step 3: Reflection and intensity

- n_1 polygon The normal defines the color (or shade) of the polygon n_2
- Normal: vector perpendicular to the

Polygons rendered without shader

(flat)

 α = angle between light and normal β = angle between camera and normal

The smaller the difference between the angles The brighter the polygon

Isosurfaces: Step 3: Illumination

No shader

Gouraud shading

Bilinear interpolation of the intensities (color) between two normals

Modern hardware: use Phong (better than Gouraud, but a bit more intensive computing)

Phong shading Barycentric interpolation of the normals themself

Isosurface: towards ray tracing

The more bounces, the more realistic the image becomes

Isosurface: Example

ImageJ 3D viewer

Isosurface and (very basic) volume renderer Good quality, but limited Buggy (in my view)

But: export as STL, wavefront ==> 3D printer

And volume calculation

Commercial renderer

Avizo/Amira/Imaris Very flexible, commercial software Good quality, extensive renderer

Available through ScilT (BioNano workstation)

Open source ray-tracer

Blender 2.82 cycles renderer Realistic rendering possible Slow

Free to download

ED

Isosurface: Ray-tracing and GANs

Isosurface: surface rendering

Isosurfaces: example

Advantages:

- Computationally fast
- Good 3D interpretation

Disadvantages:

- Noise effects: only one signal (e.g. LSM channel, segmented/thresholded)
- Hence: not suitable for noisy data (e.g. electron tomography)
- Preferably: thresholded/segmented (binary) data

Main disadvantage: A decision for every voxel must be made. This can produce:

- false positives (spurious surfaces)
- false negatives (erroneous holes in surfaces)

3D rendering

Never publish only renderings. Always provide the raw data.

Note: renderings require **interpretation** by the user. Hence, they are the convolution of the raw scientific data and the feature the user would like to see.

1. Surface rendering

= binary threshold-based

2. Volume rendering

= percentage threshold-based

Direct volume rendering methods generate images of a 3D volumetric data set without explicitly extracting geometric surfaces from the data (Levoy 1988).

Volume rendering offers the possibility for displaying weak or fuzzy surfaces. This frees one from the requirement to make a decision whether a surface is present or not.

Every voxel should contribute to the image

How does it work?

VOLUME RAY-CASTING (or ray marching): Cast imaginary rays through the entire 3D stack
 DEFINE TRANSFER FUNCTION: setup rules for color and alpha (opacity)
 DEFINE EDGES AND LIGHT SOURCE: shading
 ACCUMULATE THE DATA

Volume rendering: 1. Ray casting & interpolation

For each pixel of the final image, a ray of sight is shot ("cast") through the volume. At non-orthogonal angles, **interpolation** is needed

Ray casting

projects in the **visualization plane** the voxels with maximum intensity that fall in the way of **parallel rays** traced from the **viewpoint** to the plane of projection

48	38	37	38	37	39	37	38	38	38	40	43	49	75	87	92	97	92	107	110		
45	3.0	37	36	37	37	38	37	30	30	40	45	54	66	74	92	00	00	120	124		
25	20	25	24	36	27	20	25	20	44	40	47	67	74	77	07	100	100	120	146		
35	35	35	34	30	37	38	35	38	41	43	47	03	74	12	97	108	109	123	110		
37	34	36	35	35	39	38	36	38	43	48	57	67	77	80	86	118	113	134	118		
37	35	33	34	38	37	38	38	39	39	50	59	71	89	102	105	105	112	127	135	◀	
38	34	35	35	37	40	37	40	40	43	54	74	77	89	102	109	110	105	115	144	<	
36	34	36	37	35	39	40	41	42	49	57	72	82	87	109	124	123	114	114	127		
24	25	25	25	27	40	44	42	47	57	64	75	02	00	102	11/	120	124	120	127		
34	33	33	22	57	40	44	45	47	57	04	15	02	00	102	114	120	124	129	157		
36	36	38	37	38	43	42	46	47	60	11	88	96	95	108	124	128	115	138	135		
35	34	36	38	40	43	42	47	52	75	90	92	102	105	113	123	118	114	127	140	<	
37	37	39	42	44	45	50	61	77	88	91	97	104	112	112	122	123	120	122	132	<	
37	37	39	40	48	56	58	68	72	89	102	107	103	121	113	133	128	130	135	117		
37	30	11	15	53	68	78	74	84	07	104	110	11/	125	120	124	133	138	151	137		
51	30	41	45	55	00	10	/4	04	51	104	110	114	125	120	124	133	130	151	157		
40	41	46	53	57	72	84	80	83	120	113	117	125	122	129	134	127	137	131	138		
44	47	52	61	63	89	103	92	100	110	120	119	125	128	132	128	127	143	136	134		
51	54	64	68	87	98	102	109	111	105	121	122	131	132	127	124	129	127	141	142	◀	
58	56	70	75	89	97	104	114	111	112	129	129	131	119	126	158	149	131	148	128	<	
64	86	07	00	101	100	110	117	100	100	127	128	120	127	122	153	155	132	130	120		
67	00	100	100	101	105	110	117	105	109	127	120	129	121	122	133	155	132	135	129		
0/	85	108	100	108	115	112	135	127	124	129	131	140	141	134	141	154	144	126	120		
96	89	108	113	111	112	116	126	147	143	147	144	140	147	147	141	150	140	137	136	◀	

For each sampling point: RGBA is computed (Red, Green, Blue and Alpha)

For each pixel of the final image, a ray of sight is shot ("cast") through the volume. At non-orthogonal angles, **interpolation** is needed

Volume rendering: step 2: Sampling and interpolation

Nearest Neighbour

- = unweighted
- ➔ Take the value of the closest voxel

1D NN: closest of two points

2D NN: closest pixel of four corners of a square

Linear

- = Center of mass
- ➔ Take the linear average of the two pixels the ray is intersecting

1D Linear: Center of mass of two points

Bilinear: Center of mass of square corners Trilinear: Center of mass of cube lattice points

Cubic

- ➔ Center of mass
- = Lagrange polynomials, cubic splines or cubic convolution

1D Cubic: Center of mass of 3th degree polynomial

Bicubic: Center of mass of 16 pixels Tricubic: Center of mass of 64 pixels

Volume rendering: Example - Maximum intensity projection

projects in the **visualization plane** the voxels with maximum intensity that fall in the way of **parallel rays** traced from the **viewpoint** to the plane of projection

Image > Stack > 3D Project...

Original stack

Maximum intensity (brightest point)

Advantages computationally fast

Disadvantages May not provide a good sense of depth of the original data. Two MIP renderings from opposite viewpoints are symmetrical images No difference between left or right, front or back.

Volume rendering: step 3: shading

Shading

For each sampling point, a gradient of illumination values is computed. These represent the orientation of local surfaces within the volume. The samples are then *shaded* (i.e. coloured and lit) according to their surface orientation (normal) and the location of the light source in the scene.

Each sampling point is shaded according to its normal

Note: thresholding needed!

Imaris

Avizo

FR

Volume rendering: step 4: compositing

Compositing

After all sampling points have been shaded, they are composited along the ray of sight, resulting in the final colour value for the pixel that is currently being processed.

$$L_{
m o}({f x},\,\omega_{
m o},\,\lambda,\,t)\,=\,L_e({f x},\,\omega_{
m o},\,\lambda,\,t)$$

The total spectral radiance x = position $\omega_0 = direction (angle)$ $\lambda = wavelength$ T = time point The emitted spectral radiance

$$f_r(\mathbf{x},\,\omega_{\mathrm{i}},\,\omega_{\mathrm{o}},\,\lambda,\,t)\,L_{\mathrm{i}}(\mathbf{x},\,\omega_{\mathrm{i}},\,\lambda,\,t)\,(\omega_{\mathrm{i}}\,\cdot\,\mathbf{n})\,\,\mathrm{d}\,\omega_{\mathrm{i}}$$

⁴ The bidirectional reflectance distribution function

The spectral radiance

Volume rendering: Maximum intensity projection

Volume rendering: Projection

BIO-INSPIRED MATERIALS

IN RESEARCH

Volume rendering: Projection

Volume rendering: Volume

EXERCISE Open Example 2 and try out the Volume viewer (plugins > volume viewer) V Interpolation: Trilinear (1) Mode: Volume (4) z-Aspect: 1.0 Sampling: 1.0 Background Snapshot Reset Slice (0) Slice & Borders (1) Max Projection (2) Projection Projection (3) Threshold and set compositing effects Volume (4) 3D Fill 2D Grad 2D MD 1D

Volume rendering

EXERCISE Open Example 2					
Add	×				
Image Reslice of Example2	•	1. 2.	Plugins > 3D viewer Select Display as volum	ne, color (your choice) and res	ampling factor of 1)
Name Reslice of Exam		3.	No need to set a thresh	nold	
Display as Volume	Select Volume				
Color White	Select a color				
Threshold 0 Resampling factor 1	NO threshold Do not downsample (value	==1)			
Channels			FIJI	Avizo	Imaris
✓ red ✓ green ✓ blue Start at time point 0 OK Car	ncel	100	50 50 100		
		(inte	50 60		

Volume rendering: Imaris

BioNano has a workstation dedicated to Image rendering (amipc22.unifr.ch) Soft Matter physics has also a workstation More number cruncher available at Biology, Medicine, (physics?)

Imaris: dedicated to 3D LSM data

Volume rendering: Aviso

BioNano has a workstation dedicated to Image rendering (amipc22.unifr.ch)

Aviso: dedicated to 3D non-fluorescent 3D and 4D data

Z-Stacks

✓ Congratulations,You finished Part IV, 3D

