
Introduction to ImageJ
Session 3: Thresholding, segmentation and (particle) size

analysis

Dimitri Vanhecke

How does software measure images?

How does a software measure images?

Primary units: Area of an object

Original grayscale Thresholded Histogram # of pixels = area

(by Analyse Particles)

How does a software measure images?

Primary units: Count objects

Grayscale Thresholded Max eroded pointsDistance transform

= a derived
representation
where every
foreground pixel
takes a value in
function of the
distance to the
nearest
background pixel

Histogram Get # of pixels
= # Objects

How does a software measure images?

Primary units: perimeter of an object --> tricky (estimates)

"Perfect" circles do not have a
circularity of 1 The perimeter of an object (here: 128x128 square)

depends on its angular position.

How does a software measure images?

Primary units: perimeter of an object --> tricky (estimates)

Grayscale Threshold - Erosion

of edge pixels
≅ perimeter

166234
232

LoG
0 −1 0
−1 4 −1
0 −1 0

LoG
−1 −1 −1
−1 8 −1
−1 −1 −1

Skeletonization

163

Boundary pixels

Checkerboard / Manhattan /
Euclidean geometry

How does a software measure images?

Primary units: perimeter of an object: Crofton estimator

Grayscale Thresholded Crofton (based on Buffon's needles)

2 Way Crofton
(horizontal and vertical)

P = 188.5

4 Way Crofton
(2-way + 2 diagonals)

P = 187.5

Binary operations

Thresholding / binarization / segmentation

1 bit

8/12/16 bit

Morphological binary operations

Binary images
are images with only two values: black (usually
intensity = 0) and white (intensity =1, or 255).
It is assumed that objects are black and background is
white, but this can vary.

Prerequiste: Binary data
Binary data is the output of thresholding

Morphological operations rely only
on the relative ordering of pixel
values, not on their numerical values
(hence: binary data)

Morphological binary operations – structuring element

Structuring element
Morphological techniques probe an image with a small shape
or template called a structuring element. The structuring
element is positioned at all possible locations in the image and
it is compared with the corresponding neighbourhood of pixels.

Fits A SE fits within the neighbourhood
Hits B SE hits a boundary
None C Neither hits not fits

Background = 0, black
Foreground = 1, white

SE

A

CB

Basic (primary) binary operations: dilation

1. Consider each of the background pixels
2. For each background pixel (= input pixel) the

SE is superimposed. (origin of the SE
coincides with the input pixel).

3. When hit: input pixel changed to
foreground (=If at least one pixel in the
structuring element coincides with a
foreground pixel in the image underneath)

4. When fit or none: do nothing (If all the
corresponding pixels in the image are
background the input pixel is left at the
background value).

5. Structuring element:

Input pixel

Structuring
element

SE

SE

Hit!

SE

Hit!

SE

Hit!

SE

Hit!

SE

Hit!

SE

Hit!

SE

Hit!

SE

Hit!

Basic (primary) binary operations: erosion

1. Consider each of the foreground pixels
2. For each foreground pixel (= input pixel) the SE

is superimposed. (origin of the SE coincides
with the input pixel).

3. When hit: input pixel changed to background
(=If at least one pixel in the structuring
element coincides with a background pixel in
the image underneath)

4. When fit or none: do nothing (If all the
corresponding pixels in the image are
foreground the input pixel is left at the
foreground value).

5. Structuring element:

Input pixel

Structuring
element

SE SE SE

SE SE
SE

Hit! Hit!

Fit! Hit!

Hit!

Fit!

SE

Hit!

SE

Hit!

SE

Hit!Gray: ‘hit’
pixel

Basic (primary) binary operations: dilation and erosion

Erosion

Gradually enlarges the boundaries

of background regions (i.e. black

pixels, typically).

Dilation

Gradually enlarges the

boundaries of the

foreground objects (i.e.

white pixels, typically).

Secondary binary operations: open and close

Open
First dilates, then erodes.
Gentle way to remove pepper
noise (=cleanup of foreground)

Close
First erodes, then dilates.
Gentle way to remove salt
grains (=cleanup of
background)Idempotence

The property of applying more
than once does not produces a
further change. E.g. Open and
close binary operators

binary operations: Hit and miss

1. Foreground pixels of SE hits foreground input
pixel:

When hit: input pixel changed to background
When fit: do nothing

2. Background pixels of SE hit background pixel:
When hit: input pixel changed to foreground
When fit: do nothing

3. I don’t care pixels: ignore

I don’t care

Background

Foreground

Corner detection!

Binary operations
ErosionDilation Open Close

OutlineFill holes Skeleton

Original

Binary operations

Hit or miss Finding ends and corners
Thinning Reduces the object to a single pixel line (skeletonization)
Thickening Calculate convex hull of object
White top-hat First opens (removing bright structures smaller than

structuring elements), then removes the result from the
original image. When applied with a large structuring
element, the result is an homogenization of the
background, making bright structures easier to segment.

Dark top-hat can be used to enhance dark structures observed on an
nonhomogeneous background.

Binary operations: further applications

Voronoi diagrams Delauney tesselation (red: Voronoi, black: Delauney)

Example:
- Fingerprint analysis
- Face recognition
- …

Binary operations: Eucledian Distance transform

A distance transform, is a derived representation of a binary digital image

The result: the Euclidian distance map. Each foreground pixel in the binary image is
replaced with a gray value equal to that pixel’s distance from the nearest background pixel
(for background pixels the EDM is 0)

Binary operations: Ultimate eroded points

The Ultimate Points extracts the last point that would be removed if the object were eroded to completion.
They represent the seed of an object (=number of objects).

Iterations of eroding steps

Origin binary Ultimate eroded points Overlay UEP with binaryEucledian distance map

Binary operations: Watershed

Watershed segmentation is a way of automatically separating touching
objects.
1. the Euclidian distance map (EDM) is calculated
2. the ultimate eroded points (UEPs) are calculated .
3. Dilation of each of the UEPs as far as possible:

1. until the edge of the original particle is reached
2. Or the edge touches a region of another (growing) UEP.

How does a software measure images?

EXERCISE 1
Open example 1A and count the number of coins using eroded points. Repeat for example 1B

Process > Binary > Ultimate points

How does a software measure images?

EXERCISE
Open example 1A and count the number of coins using maximum eroded points. Repeat for example 1B

File > Open...
Image > Adjust > Threshold...
113-255

Process > Binary > Fill holes
Process > Binary > Ultimate points
(Calculates the EDT and then the UEP)
Process > Histogram
(In Histogram window) > List

How does a software measure images?

EXERCISE
Open example 1A and count the number of coins using maximum eroded points. Repeat for example 1B

File > Open...
Image > Adjust > Threshold...
113-255

Process > Binary > Fill holes
Process > Binary > Ultimate points
(Calculates the EDT and then the UEP)
Process > Histogram
(In Historgam window) > List

How does a software measure images?

EXERCISE
Open example 1B and count the number of blobs using maximum eroded points.

File > Open...
Image > Adjust > Threshold
Edit > Invert (make sure your objects are
White)*

Process > Binary > Ultimate Points
Process Histogram

To count:
Process > Make binary
(In histogram) > List > check at value 255

* Note: you can also invert the look-up table (Image > Color >
Invert LUT ​), this does not change your objects pixel values. I.e.
black => 255, and white => 0, which can be very confusing)

EXERCISE
Convert Example 2 – AuNP to a binary image. Compare with and without watershed

Binary operations: Watershed

Process > Binary > Watershed

To compare the two windows: Analyze > tools > Synchronize windows

File > Open…
Image > Adjust > Threshold…

Click ‘Auto’
Click ‘Apply’

Duplicate the image (ctrl+shift+D)

EXERCISE
Convert Example 2 – AuNP to a binary image. Compare with and without watershed

Original

Binary operations: Watershed

Process > Binary > Watershed

B
in

ar
y

B
in

ar
y

+
w

at
er

sh
ed

17 objects
(not touching the edge)

31 objects
(not touching the edge)

How does a software measure images?

Given
- The primary units (area, perimeter, number)
- The position of all foreground pixels (array of X and Y)

Secondary units:

Centroid Average of all x and y within each object

Bounding Rectangle The smallest rectangle enclosing the object

Fit Ellipse Fit an ellipse to the object

Circularity
4∙𝜋∙𝑎𝑟𝑒𝑎

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2
, for each object

Aspect ratio
𝑀𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠

𝑀𝑎ℎ𝑜𝑟 𝑎𝑥𝑖𝑠
, for each object

Roundness
4∙𝑎𝑟𝑒𝑎

𝜋∙𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠2
, for each object

Solidity area/convex area.

Feret's Diameter Longest distance between any two pixels in an object.
…

Everything relies on the thresholding
step…

Thresholding, classification and segmentation

Thresholding, classification and segmentation

Level 1

Histogram-based

Thresholding

How?
By setting the transfer function to a vertical asymptote (=infinite contrast), preferably automatic (=non-subjective)

Two concepts for unsupervised pixel thresholding (a.k.a. automatic thresholding):
Histogram shape based
Image entropy based
(there are more, but these two classes are the most common)

Some thoughts:
- Use 16-bit data (or 32 bit). Not 8 bit
- Global thresholding is preferred over local thresholding (=last resort)
- Try to go for easy, straightforward and known thresholding algorithms (ISOdata, Otsu, ...), which are discribed in the

scientific literature (references)
- Auto-thresholding is preferred over manual thresholding (reproducibility)
- There is no «correct» solution, just models that try to simplify the complexity of nature.

Thresholding

GIGO

Image processing to the rescue (see before):
Gradient Mean filter with large kernel
Fireflies/hot pixels/dead pixels Bin your data, Median filter with a kernel as
small as possible,
post thresholding: Morphological filters (open/close)
Touching objects: Watershed

Auto – thresholding

Clustering
ISOdata
Otsu
Intermodes (assumes equal bimodal histogram)
Minimum
Mean (Mean of grayscale as threshold, initates ISOdata)
Percentile (assumes foreground pixels fraction of 0.5)
Yen
Entropy
Huang and Huang 2 (faster)
Shannon’s entropy
Li
MaxEntropy
RenyiEntropy
Shanbhag
Metric
Triangle
Moments
Tsai

Unsupervised thresholding: clustering

– the average intercenter distance between the clusters falls below a threshold,
– the average change in the intercenter distance between iterations is less than
a preset threshold, or
– the maximum number of iterations is reached

Ideal for bimodal histograms!
You do not have a bimodal histogram?
Use entropic thresholding

All pixels are randomly assigned into 2
clusters (foreground and background)

The standard deviation within each cluster,
and the distance between cluster centers is
calculated

Clusters are re-arranged to minimize large
standard deviations (outliers are swapped).

Iterate!

U
n

ti
l…

Unsupervised thresholding: entropy

• Entropy difference is maximized (MaxEntropy)
• Entropy difference is minimized (MinEntropy)
• Fuzziness is minimized (Huang)

Better for non-bimodal histograms!

All pixels are randomly assigned into 2
clusters (foreground and background)

The entropy within each cluster is calculated:

𝐻 = −෍

𝑖=𝑖0

𝑖𝑀

𝑝𝑖 𝑙𝑜𝑔(𝑝𝑖)

Clusters are re-arranged to minimize entropy
(outliers are swapped).

Iterate!

Information entropy:
Quantification for Surprise
e.g.: flip a coin. The “surprise“ factor is 1/2

Probabilities

MaxEntropy

Huang (fuzzy)

Li
RenyiEntropy

Shanbhag

Entropy

Relative occurrence of letters in the english language

U
n

ti
l…

Thresholding algorithms

EXCERCISE
Open Example 3 (A/B/C). Run a threshold and check the differences between the algorithms. Try it also
on your own data.

Image > adjust > Threshold...
Note the difference between different pixel classification algorithms

Thresholding, classification and segmentation

Level 2

Machine learning

Thresholding: human vs machine

Thresholding: human vs machine

1 2 3 4 5
6

7
8

9
10

1112 14

13
15

17

16 18

19

20

21

22 23 24

CONTEXT

From thresholding to classification

FIB Data by Henry Lee

From thresholding to classification

Intensity in the neighbourhood (s = 1.00)
(a.k.a. Context)

Intensity

Statistical classification methods
• Artificial neural networks
• Decision tree learning e.g. Random forest
• Kernel estimation e.g. k-nearest neighbour
• Linear classifier e.g. Bayes classifier
• Least squares support vector machine
… And many many more

Random forest classification
(theoretical example)

Is the pixel white?

Is the neighbour pixel white?

Is the pixel far from a strong
edge?

Is the texture smooth?

Particle!

Particle!

Probably
background

Classification features
- Color/Intensity
- Texture
- Edginess
- Distance to a local edge
- Isotropy
- Curvature

From thresholding to classification

Intensity in the neighbourhood ( = 1.00)

Intensity

From thresholding to classification

From thresholding to classification to segmentation

- Use random forest ML to create a model
- Use the model to decide on other pixels in your sample (~1 000 000 pixel classifications / s on the Bionano workstation)
- (batch) Export the resulting data as probabilities or segmentations…and in case of 3D data: input them in 3D surface

rendering software
- Or quantify

Cell volume: 1871 um3

NP inside volume: 25.82 um3

NP outside volume: 0.7842 um3

(assuming spheres with a diameter of 50 nm)
Number of NP inside the cell 387815
NP per volume cell: 207 NP / um3 cell

iLastik

Standalone software iLASTIK
www.ilastik.org

iLastik

Standalone software iLASTIK
www.ilastik.org

iLastik: 1. Input data

Pr
o

ce
ss

1. Add new > Add separate images… >
• Example4-stack.h5 (for a fast PC)
• Example4-single.h5 (for a normal PC)

2. Click in the left process menu Feature selection

make sure your training images have
- Grayscale LUT
- No scale

iLastik: 1. Input data

iLastik: 2 Feature selection
Pr

o
ce

ss Select features…
(select all) > click OK

Click 3. Training

iLastik: 3. Training the machine
Pr

o
ce

ss

Scroll button: change plane in 3D
Ctrl + Scroll button = zoom in/out
1, 2 … = label select
I = Image overlay
S = segmentation
U = Uncertainity / probability

Iterate and improve your result

iLastik: 4. Save the data
Pr

o
ce

ss Single Image:

Tick: convert to unsigned 8-bit
Format: tif
Click OK

Stack:

Tick: convert to unsigned 8-bit
Format: HDF
Click OK

----- OR -----

Tick: convert to unsigned 8-bit
Format: TIF sequence
Click OK

iLastik: 4. Save the data

File > Import > HDF5…
- Click on the data

(/exported_data)
- Select «Individual hyperstacks

(custom layout)»
- Data set layout: change to «zyxt»

Stack saved as HDF

File > Import > Image sequence
Filter: “Simple Segmentation”
(➔ “Count” should then become 49)

Stack saved as tif sequence Single saved as tif

File > Open…

Ilastik output

EXCERCISE
Open the segmentation result. Find out why it is black and what you can do about it.

Ilastik output

EXCERCISE
Open the segmentation result. Find out why it is black and what you can do about it.

Normalize
Process >
enhance contrast

iLastik: 5. Batch processing
Pr

o
ce

ss Select raw datafiles …
Run «process all files» (can take a while)

iLastik

Value # of Pixels

Labkit: example and hands-on workflow

EXCERCISE
Open Example 4. Duplicate 1 image of the stack. Train a model using LabKit

Labkit: example and hands-on workflow

EXCERCISE
Open Example 4. Duplicate 1 image of the stack. Train a model using LabKit

- Install labkit from the repository: Help > Update … > Manage update sites >

- Restart FIJI

- Open Example 4

- Duplicate 1 image (e.g. # 34)

- Start Labkit: Plugins > Open current image with Labkit

Labkit: example and hands-on workflow

EXCERCISE
Open Example 4. Duplicate 1 image of the stack. Train a model using LabKit

1. Train the model

- Select Draw in the top menu

- Select background in the left menu

- paint some background pixels blue

- Repeat for foreground pixels (nuclei)

Labkit: example and hands-on workflow

EXCERCISE
Open Example 4. Duplicate 1 image of the stack. Train a model using LabKit

2. Add a classifier

- In the left menu, click “Labelkit Pixel classification”

- Click the cog wheel, check all basic filters

- Click the play button (or CTRL+SHIFT+T)

- Repeat step 1 to optimize the model

Labkit: example and hands-on workflow

EXCERCISE
Open Example 4. Duplicate 1 image of the stack. Train a model using LabKit

3. Check model uncertainity and segmentation

- In the Labkit pixel classifier, click the down arrow

- Select “Show segmentation Result in ImageJ”

- Repeat with Show Probability Map in ImageJ

Segmentation Probability

3 bin histogram

Labkit: example and hands-on workflow

EXCERCISE
Open Example 4. Duplicate 1 image of the stack. Train a model using LabKit

4. Batch export: apply the model to all images in the folder

- Save the stack as a list of files: File > save as… > Image sequence…

- In Labkit: Others > Batch segment images…

- Select the folder with the separate images Example 4 (also as output)

- Do not use the GPU

- Run the batch (progress can be followed in the FIJI info bar)

- File import > Image sequence: point to the folder

- Filter: use ‘seg’ to filter for file names that contain segmentation

- The images are black!

Labkit: example and hands-on workflow

EXCERCISE
Open Example 4. Duplicate 1 image of the stack. Train a model using LabKit

5. Equalise the histogram of the segmented data

- With the segmented data stack open: Process > enhance contrast

- Check all except normalize

- Click OK

(alternative: Process > Math > Multiply: 255)

Before equalization After equalization 3D rendering

Thresholding, classification and segmentation

Level 3

Deep learning

Thresholding: human vs machine

Histogram based Thresholding
FIJI native

Classification
Labkit (FIJI plugin)
iLASTIK (standalone)

Classification
DeepImageJ
CSBDeep
StarDist

Deep Learning

From the repositories, install deepImageJ
Help > Update…
In the imageJ Updater > manage update sites. Tick CSBDeep

Click close
Click apply changes
Restart FIJI

Meanwhile, have a look at www.bioimage.io

Deep Learning with Ilastik

Deep Learning with DeepImageJ

1. Add new > Add separate images… > Example4-single.h5

Deep Learning with DeepImageJ

Finally: click Live prediction

Deep Learning with DeepImageJ

Deep Learning with CSBDeep

How to train a model yourself?
> Install CSBDeep

Plugins > CSBDeep > DenoiSeg > Train

Training data:
1. Raw datasets
2. Masked (manually) segmented datasets
(e.g. 100 2D images at 512x512 px)

Training: use about 80% of your dataset, 20%
for validation (e.g. 80 images for training)

Number of Epochs: the more the better
Steps per Epoch: the more the better
Batch/Patch size: do not change

Then: wait...

Deep Learning with CSBDeep

Training DenoiSeg model: Plugins > CSBDeep > DenoiSeg > DenoiSeg Train
→ Data in folder: Example 7

Deep Learning with CSBDeep

Training DenoiSeg model: Plugins > CSBDeep > DenoiSeg > DenoiSeg Train
> Data in folder: Example 7

Raw data Denoised result P(FG) P(BG) P(edges)

Preview window

Deep Learning with CSBDeep

Underfitting

the model is unable to accurately
model the training data, and hence
generates large errors

Overfitting

the model performs well on training
data but poorly on the new data in
the validation set.

Good fit

Deep Learning with CSBDeep

EXCERCISE
Use the trained model on data from Example 7

- Open a dataset from the trained images (e.g. Images > test > Example7 test.tif)
- Duplicate 1 image
- Plugins > CSBDeep > DenoiSeg > DenoiSeg predict

model (a .zip)

Noisy image

Deep Learning with CSBDeep

EXCERCISE
Use the trained model on data from Example 7

Original Denoised P(BG) Binary Watershed

Watershed

Deep Learning with StarDist

Looks to work well for segmentation of fluorescence data (e.g. nuclei), but 2D
Help > Update… > Manage update sites > Stardist
Can be scripted

Deep Learning with StarDist

Looks to work well for segmentation of fluorescence data (e.g. nuclei), but 2D
Help > Update… > Manage update sites > Stardist
Can be scripted

Ilastik, quick manual Affable-shark Stardist

Deep Learning with StarDist

Looks to work well for segmentation of fluorescence data (e.g. nuclei), but 2D
Help > Update… > Manage update sites > Stardist
Can be scripted

Number extraction

Blob analysis aka particle counting

Before you start:
- Can you trust your binary image?
- Is the scale properly set? (Analyse > set scale)
- Is the foreground particle white (if not: invert: ctrl+i)
- What do you want to measure (Analyse > Set Measurements)

Two step procedure:
1. Binarization (=threshold)
2. Measurement: Analyze > Measure particles

Assumption
Your data is binary (or at least segmented)

Size measurements: filters

Original (thresholded) Edge filter

particles touching the edge
will be ignored

Size: 0-50

Size: 50-

Particles with size
(=area) outside the range
specified in this field are
ignored.

Size filter Circularity filter

Ranges from 0 (infinitely
elongated polygon)
to 1 (perfect circle).

0.3-0.5

0.0-0.3Interior holes will be
included

Include holes

Circ. = 4𝜋 ×
𝐴𝑟𝑒𝑎

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2

Size measurements: Outlines, masks and overlays

Nothing: Neither Outlines, masks nor Overlays will be displayed.
Outlines: 8–bit image containing numbered outlines of the measured particles.
Bare Outlines: 8–bit image containing simple outlines of the measured particles without labels.
Masks: 8–bit binary image containing filled outlines of the measured particles
Ellipses: 8–bit binary image containing the best fit ellipse (cf. Edit>Selection>Fit Ellipse)
Count Masks: 16–bit image containing filled outlines of the measured particles painted with a grayscale

value corresponding to the particle number.
Overlay Outlines: Displays numbered outlines of the measured particles in the image overlay.
Overlay Masks: Displays numbered and filled outlines of the measured particles in the image overlay.

If In situ Show is checked, the original image will be replaced by this image.

Size measurements: Results

Display results
The measurements for each particle will be displayed in the Results Table.

Clear Results
If checked, any previous measurements listed in the Results Table will be cleared

Summarize
If checked, the particle count, total particle area, average particle size, area fraction and the mean of all parameters listed in the Set
Measurements. . . dialog box will be displayed in a separate Summary table (useful for “stacks”).
Note that while single images ‘Summaries’ are output to the same Summary table, stack Summaries are printed in dedicated tables (named
Summary of [stack title]). Also, note that descriptive statistics on Results measurements can be obtained at any time using the Summarize
command.

Add to Manager
If checked, the measured particles masks will be added to the ROI Manager. . .

Results table

File > save as...

Saves the table as comma separated values (CSV)

Which can be imported in Excel, R, Stata, ...

Size measurements: Results

1. Image > adjust > threshold (use Default)
2. Analyze > Measure particles
3. Analyze > Distribution

EXERCISE

Calculate the mean radius of the AuNP in Example 2 – AuNP. Try with and without performing a watershed
before. Show a distribution of the feret.

Size measurements: Results

EXERCISE

Calculate the mean radius of the AuNP in Example 2 – AuNP. Try with and without performing a watershed
before. Show a distribution of the feret.

Quantification without thresholding and segmentation

Volume estimation with Cavalieri

Pro
Independent of object
Optical disector
Low coefficient of error

Contra
thickness must be known
Over/underprojection

3D Object XZ side view XZ view Cavalieri XY view Cavalieri

Systematically uniform grid,
randomly dropped

t

a/p

Volume estimation with Cavalieri

a/p = 1 cm2

Thickness: 2 cm
Repeat i times (with i = number of banana
pieces)

Volume estimation with Cavalieri

𝑉 = 𝐴𝑝 ∙ 𝑡 ∙ ෍𝑃𝑖

𝑉 = 1 𝑐𝑚2 ∙ 2(𝑐𝑚) ∙ 116
𝑉 = 232 𝑐𝑚3

𝐶𝐸𝑛𝑜𝑖𝑠𝑒 =
𝑁𝑜𝑖𝑠𝑒

σ𝑃
= 2.9 %

𝐶𝐸𝑆𝑈𝑅𝑆 =
𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔

σ 𝑃
= 0.8 %

𝐶𝐸𝑡𝑜𝑡𝑎𝑙 =
𝑁𝑜𝑖𝑠𝑒+ 𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔

σ 𝑃
= 3.7 %

V by submersion: 230 ml
𝑉 = 230 𝑐𝑚3

Contra
thickness must be known
Over/underprojection

Volume estimation with Cavalieri: Holmes effect

→ optical sections!
→ Holmes effect

Size measurements: Results

1. Open Example 8
2. Reduce the Z stack by factor 10
3. For fun (and to make it no longer a binary image): add noise (e.g. with an SD of 50)
3. Throw a random grid over the Image, A/p of roughly 150 pixel^2
4. Count the number of crosses that fall onto the object, on all slices

EXERCISE

Open Example 8. Reduce the number of slices by factor 10. Then throw a random grid over the stack and do a
Cavalieri estimation of the volume

4. Analyze > tools > Grid…

5. Count on all slices (in the example: 6 (7?))
6. Volume = count x Area per Point x Reduction factor

Size measurements: Results

EXERCISE

Open Example 8. Reduce the number of slices by factor 10. Then trhow a random grid over the stack and do a
Cavalieri estimation of the volume

1. File > open
2. Image > stacks > Tools > reduce…

3. Process > Noise > Add specified noise… (yes, all slices)

Surface estimation with Buffon’s needle

𝑝 =
2

𝜋
∙
𝑙

𝑡

Surface estimation with Buffon’s needle

𝑆 = 2 ∙
1

𝑛
∙ ෍

𝑖=1

𝑛
𝑣

𝑙𝑖
∙ 𝑙𝑖

n = 3 (number of dimensions)
𝑙𝑖= number of intersections
𝑣

𝑙𝑖
= Area per volume

t

𝑙

t = distance between two slices
l = distance between two lines

𝑣

𝑙𝑖
= 𝑡 ∙ 𝑙

Surface estimation with Buffon’s needle

Cochlea XY Cochlea YZ Cochlea XZ

160 156 137

n = 3 (number of dimensions)
σ 𝑙𝑖= 453
𝑣

𝑙𝑖
= 100

→ 10 (distance between the grid lines) .
→ 10 (reducing factor, distance between adjacent slices, in pixels)

S =
2

3
∙ 453 ∙ 100 = 30 200 𝑝𝑥2

𝑆 = 2 ∙
1

𝑛
∙ ෍

𝑖=1

𝑛
𝑣

𝑙𝑖
∙ 𝑙𝑖

By software: S = 32 450 𝑝𝑥2

Number estimation with the disector

Stereology

✓ Congratulations,
You finished Part III, Thresholding, segmentation and
(particle) size analysis

	Slide 1: Introduction to ImageJ Session 3: Thresholding, segmentation and (particle) size analysis
	Slide 2: How does software measure images?
	Slide 3: How does a software measure images?
	Slide 4: How does a software measure images?
	Slide 5: How does a software measure images?
	Slide 6: How does a software measure images?
	Slide 7: How does a software measure images?
	Slide 8
	Slide 9
	Slide 10: Morphological binary operations
	Slide 11: Morphological binary operations – structuring element
	Slide 12: Basic (primary) binary operations: dilation
	Slide 13: Basic (primary) binary operations: erosion
	Slide 14: Basic (primary) binary operations: dilation and erosion
	Slide 15: Secondary binary operations: open and close
	Slide 16: binary operations: Hit and miss
	Slide 17: Binary operations
	Slide 18: Binary operations
	Slide 19: Binary operations: further applications
	Slide 20: Binary operations: Eucledian Distance transform
	Slide 21: Binary operations: Ultimate eroded points
	Slide 22: Binary operations: Watershed
	Slide 23: How does a software measure images?
	Slide 24: How does a software measure images?
	Slide 25: How does a software measure images?
	Slide 26: How does a software measure images?
	Slide 27
	Slide 28
	Slide 29: How does a software measure images?
	Slide 30: Thresholding, classification and segmentation
	Slide 31: Thresholding, classification and segmentation
	Slide 32
	Slide 33
	Slide 34: Auto – thresholding
	Slide 35: Unsupervised thresholding: clustering
	Slide 36: Unsupervised thresholding: entropy
	Slide 37
	Slide 38: Thresholding, classification and segmentation
	Slide 39: Thresholding: human vs machine
	Slide 40: Thresholding: human vs machine
	Slide 41: From thresholding to classification
	Slide 42: From thresholding to classification
	Slide 43: From thresholding to classification
	Slide 44: From thresholding to classification
	Slide 45: From thresholding to classification to segmentation
	Slide 46: iLastik
	Slide 47: iLastik
	Slide 48: iLastik: 1. Input data
	Slide 49: iLastik: 1. Input data
	Slide 50: iLastik: 2 Feature selection
	Slide 51: iLastik: 3. Training the machine
	Slide 52: iLastik: 4. Save the data
	Slide 53: iLastik: 4. Save the data
	Slide 54
	Slide 55
	Slide 56: iLastik: 5. Batch processing
	Slide 57: iLastik
	Slide 58: Labkit: example and hands-on workflow
	Slide 59: Labkit: example and hands-on workflow
	Slide 60: Labkit: example and hands-on workflow
	Slide 61: Labkit: example and hands-on workflow
	Slide 62: Labkit: example and hands-on workflow
	Slide 63: Labkit: example and hands-on workflow
	Slide 64: Labkit: example and hands-on workflow
	Slide 65: Thresholding, classification and segmentation
	Slide 66: Thresholding: human vs machine
	Slide 67: Deep Learning
	Slide 68: Deep Learning with Ilastik
	Slide 69: Deep Learning with DeepImageJ
	Slide 70: Deep Learning with DeepImageJ
	Slide 71: Deep Learning with DeepImageJ
	Slide 79: Deep Learning with CSBDeep
	Slide 80: Deep Learning with CSBDeep
	Slide 81: Deep Learning with CSBDeep
	Slide 82: Deep Learning with CSBDeep
	Slide 83: Deep Learning with CSBDeep
	Slide 84: Deep Learning with CSBDeep
	Slide 85: Deep Learning with StarDist
	Slide 86: Deep Learning with StarDist
	Slide 87: Deep Learning with StarDist
	Slide 88: Number extraction
	Slide 89: Blob analysis aka particle counting
	Slide 90: Size measurements: filters
	Slide 91: Size measurements: Outlines, masks and overlays
	Slide 92: Size measurements: Results
	Slide 93: Size measurements: Results
	Slide 94: Size measurements: Results
	Slide 95: Quantification without thresholding and segmentation
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100: Size measurements: Results
	Slide 101: Size measurements: Results
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107

