

Introduction to ImageJ session 1: Basics

Dimitri Vanhecke

March 2024

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Administration

Who am I?

- PhD in structural biology (University of Bern)
- PostDoc in 3D image quantification
- 2 years at Max Planck Institute of Biochemistry, Munich, Germany
- At AMI since 2012
- Author or co-author on 80+ scientific papers
 - >3500 citations
 - h-index: 30
 - i10-index: 45
- 20 years of experience with scientific images (2D, 3D and 4D: LSM, SEM, TEM, FIB, etc...)
- 20 years of experience with imageJ and Fiji

Administration

Administration

Why ImageJ (in fact: FIJI)?

Functionality

FIJI (FIJI is just imageJ)

- Graphical user interface
- Extendable with plugins
- Designed for scientific data
- Broad functionalities
- Scripting possibilities

Part I: digital images and pixels

- Analogue to digital
- What is a pixel?
- Noise
- Image file formats
- Bitdepth

Image processing

Image processing starts with recording good images

Central idea: GIGO Garbage in, garbage out

Good image in → maybe better image out Bad image in → never a good image out

Going digital: Continuous to discrete function

- 1. Spatial sampling
- 2. Time sampling
- 3. Analog to digital conversion

Going digital: Cameras and detectors

Going digital: from photon to pixel intensity (PMT)

Going digital: from photon to pixel intensity (PMT)

5. Analogue-to-digital converter

4. The charge amplifier / time sampling

All charges coming from the PMT are stored in a capacitor .

for resetting the charge amplifier

Shannon Sampling Theorem If a function S(t) contains no frequencies higher than B hertz, it is completely determined by giving its ordinates at a series of points spaced 1/(2B) seconds apart

Shannon Sampling Theorem - revisted

If a series of discrete values has been sampled 1/(2B) apart, it does not contain information smaller than B hertz.

If an image has been recorded at a resolution of e.g. 100 nm, it does not contain information smaller than 200 nm.

What is a pixel: Nyquist theorem

Nyquist's theorem ("howto convert analog to digital"):

the frequency of the digital sample should be twice that of the analog frequency

For digital images:

= a "sampling rate" of 2 wells relative to the object image size.

Noise: dark noise (PMT)

- Even if no photons hit the cathode at all, events will still be measured at the anode
- Triggered by thermal electrons emitted by the cathode.
- Amplified by the following stages of dynodes.
- These events are known as 'dark noise'
- For weak signals, they can no longer be differentiated from the background.

Going digital – what is a digital image?

A digital image is an ordered, rectilinear array (or grid) of **numbers (usually integers: 0,1,2,3...)**. Each element (=number) in the grid is also known as a picture element or 'Pixel'

BIO-INSPIRED MATERIALS

IN RESEARCH

NIVERSITAT ERFIBURG

What is a pixel? - it depends on the context

What is a pixel – the little square model

Problem: how to convert a continuous spectrum (nature) to a discrete set of intensities (digital)

Where is the center of a pixel?

'Integerists'

Pixel (i, j) corresponding to square $(x, y) \rightarrow i - 0.5 \le x \le i + 0.5, j - 0.5 \le y \le j + 0.5$

A pixel is a point sample (it exists only at **one point***)

 $e(x, y) \rightarrow i - 1 \le x \le i + 1, j - 1 \le y \le j + 1$

*For color pixels, there might be 3 or even 4 values at that point An image = an array on point samples (Shannon sampling theorem!)

What is a pixel – the reconstruction filter

Problem: how to convert a continuous spectrum (nature) to a discrete set of intensities (digital)

The footprint of a "reconstruction filter" (e.g. beam)

Image under construction

Recorded image

What is a pixel – the point sample model

<u>Q: What about the information (O) below the Shannon limit?</u>

A: we simply do not know! But you could try to guess. This is called **Reconstruction** or interpolation

Nature is continuous (has a value at every position), a digital image is a finite set of measurements: information will be lost.

Using the point sample model, we include the notion that information has been lost, and can talk about the best ways to measure that loss

A Pixel Is *Not* A Little Square, A Pixel Is *Not* A Little Square, A Pixel Is *Not* A Little Square! (And a Voxel is *Not* a Little Cube)¹

Technical Memo 6

Alvy Ray Smith July 17, 1995

What is a resolution? And what is magnification?

Noise

Additive noise

Gaussian noise

Sum of all natural sources forming a normal distribution (=Gaussian distribution).

- Johnson–Nyquist noise (thermal vibrations of atoms in conductors)
- Black-body radiation (radiation from the earth or other objects)
- Sensor noise (when not recording at 0 K)
- Electronic circuit noise (impedance in electronic cables)
- **kTC noise** (Effects of capacitors)

FFT filtering, Gaussian smoothing.

Poisson (shot) noise Caused by quantum effects due to the movement of discrete, quantized, packets

- In the source (light)
- In the electronics (electric current).
 - **Dark shot** noise: shot noise from the dark leakage current in the image sensor

Salt and pepper noise Caused by errors. Typically B/W distribution

- During data transmission
- Failure in a memory cell
- Analog-to-digital converter errors
- Occasionally in TEM (X-rays)
- In camera-based systems: dead pixels

caused by electrical interference during the image capturing process.

Signal deconvolution in reciprocal space

high intensity, exposure times Correct with bias images

Median filtering

Intermezzo - how does a computer work?

Examples of decimal (=10 digits) counting

- begins with 1 digit (rightmost digit or first digit)
- When all available symbols are exhausted:
 - the least significant digit is reset to 0,
 - the next digit (one position to the left) is incremented (=overflow)

5 9 12 13 14 15 16 17 18 11 19

Examples of binary (=2 digits) counting

- begins with 1 digit (rightmost digit or first digit)
- When all available symbols are exhausted:
 - the least significant digit is reset to 0,
 - the next digit (one position to the left) is incremented (=overflow)

 $\left(\right)$ 100 101 (0)(4)(5) (2) (3)(6)('/)

1024 bytes	= 1 KB	KB = Kilobyte
1024 KB	= 1 MB	MB = Megabyte
1024 MB	= 1 GB	GB = Gigabyte
1024 GB	= 1 TB	TB = Terabyte
1024 TB	= 1 PB	PB = Petabyte

From numbers to text

- ASCII: American Standard Code for Information Interchange
- List of numbers with defined characters

Dec	Char	Dec	Char	Dec	Char					
32	SPACE	64	 @	96	`					
33	!	65	A	97	a					
34	"	66	В	98	b					
35	#	67	С	99	С					
36	\$	68	D	100	d					
37	8	69	Ε	101	е					
38	&	70	F	102	f					
39	'	71	G	103	g					
40	(72	H	104	h					
41)	73	I	105	i					
42	*	74	J	106	j					
43	+	75	K	107	k					
14	,	76	L	108	1					
15	-	77	М	109	m					
46	•	78	Ν	110	n					
17	/	79	0	111	0					
8	0	80	P	112	р					
19	1	81	Q	113	q					
50	2	82	R	114	r					
51	3		-							
52	4	ί Λ Ν	/ 1/							
53	5		VII							
54	6	(de			72					
55	7		201: 0:	D //	/3					
56	8	/1- :	-1.40		04	1001	101	4.00	400	1
57	9	I (DI	n): 1(JUUL	JU1 :	1001	101	100	JTUU.	
58	:									
59	;	- JT	L	120	ì					
60	<	92	\	124						
61	=	93	JUNI	125	}		-		NCDIE	
62	>	94	^ F R	126		٩.		NAAT		
63	?	95	_	127	DEL			IVIAI	ERIAL	2
			UNIVERSITÉ [DE FRIBOURG				IN RESEARCH	INTER OF COMP	ETENCE

File formats

From concept: 3 different approaches:

- 1. Vector graphics formats
- 2. Raster graphics formats
- 3. Hierarchical file formats

File formats: Raster graphics

Formats Origin tif, jpg, png, bmp, webP, psb, ... raster scan of cathode ray tubes (i.e. early TV screens) 'Raster' comes from rastrum (Lat.) = to scrape

Concept

Tesselation (tiling) of a 2D plane with a value for every cell ('pixel')

File formats: Raster graphics – Headers

Concept Problem	 Tesselation (tiling) of a 2D plane with a value for every cell ('pixel') Metadata: How large is the image? When was it made? But also: e.g. medical data (patient information) e.g. scientific data (experiment information) e.g. consumer data (GPS coordinates, time and date) Header contains height and width of the raster (=image) +lots of other data 							
Solution								
Example	Header		01110100 (ASCII, 116 = T) 01101001 (ASCII, 105 = I) 01100110 (ASCII, 102 = F) 00000100 (width = 4 px) 00000001 (heigth = 1 px)					
	data		00000000 00110010 01100100 10010110					
	_							

File formats: Raster graphics – Compression

Concept Problem Solution	Tesselation (tiling) Data gets really bi Compression. The	of a 2D plane with a value for ever g re are 2 compression concepts:		
Lossy compression The original data is approximated, but not restored Example: JPG		Lossless compression the original data can be restor Example: TIFF, PNG Note: No artefacts!	Original data 32 bits 00000000 00110010 01100100 10010110	
		Algorithms: Run length encoding (RLE) Lempel Ziv (LZx, uses Lookups) LZ compressed 38 k	RLE compressed 29 bits 8x0 2x0 2x1 2x0 10 0 2x1 2x0 1 2x0 1 2x0 10 2x1 0 Dits
			A = 00 B = 11 C = 10 4XA A B A C 0 B A 1 A 1 A C B 0	Repeated to get 1024x1024: Original 8 Mb RLE 7.25 Mb (-10%) LZ 7 bytes (!) (-99.99999%)

UNIVERSITAT ERFIBURG

File formats: Hierarchical data formats (HDF)

- Formatsh5Origin1987 by the Graphics Foundations Task Force. Around 1992, NASA
investigated 15 different file formats for use in the Earth Observing
System (EOS) project and settled for HDF.
- **Concept** Container of multiple, heterogenous data (including really big datasets), with metadata
- **Some advantages** really really big datasets possible (e.g. tomography data)
 - hierarchical data (e.g. google maps)
 - heterogenous data (e.g. EDX spectra with images)
 - slices: only part of an image can be read (e.g. google maps)
 - embedded coding (allows advanced compression techniques)

File formats: raster graphics: bit depth

The range of the values a pixel can take is called the bit depth

2ⁿ = number of shades n = bitdepth

File formats: raster graphics - bit depth & colour

Note: light sources and dyes/pigments

A green laser is green because it emits green photons

A leaf is green because it absorbs all white light except the green photons (which it reflects)

UNIVERSITÉ DE FRIBOURG

Updating ImageJ/FIJI Native file formats

(manual and a state

10

原来

200

Part II: How to open your data?

- Repositories
- **FIJI** import
- Plugins
- Raw import

0. Update FIJI

Help > update ImageJ...

Start ImageJ, then Help > About ImageJ...

1. How to open your data in FIJI?

5 Possibilities:

- Native file formats
- Use a repository
- Use Import (Fiji only!)
- Use a plugin
- Through RAW import (raster graphics only)

1. Native file formats

5 Possibilities:	Format	1 bit	8 bit	16 bit	32 bit	RGB	stacks	Hyper- stacks	Compression
 Native file formats Use Import (Fiji only!) Use a repository Use a plugin Through RAW import (raster graphics only) 	TIFF	~	~	~	✓	✓	~	✓	Lossless
	GIF	•	v			•	v		Lossless
	JPEG		~			✓			lossy
	PNG	~	~	~					Lossless
	DICOM	~	~	~	✓	~	~	✓	Lossless
	BMP	~	~			~			Lossless
	PGM	~	~	~		~			Lossless
	FITS	~	~	~		~			Lossless
	AVI	~	~			~	~		Lossless

TIFF is the 'default' format of ImageJ (OME-TIFF)

DICOM is a standard popular in the medical imaging community

FITS Flexible Image Transport System: adopted by the astronomical community

PGM: Portable GrayMap

AVI container format, only uncompressed AVIs supported

Red: no header information

Native and non-native file formats

EXERCISE 1 Try to open example 1 A, B, C or D

File > open... Or drag and drop the icon from the folder onto ImageJ/FIJI

Does it work?

Native and non-native file formats

2. Using a Fiji resident plugin (Import)

File > Import >

J I USSIDIIILIES.	5	Possi	bil	lities:
-------------------	---	-------	-----	---------

- Native file formats
- Use Import (Fiji only!)
- Use a repository
- Use a plugin
- Through RAW import (raster graphics only)

•	
😈 (Fiji ls Just) ImageJ	A
File Edit Image Process A	Image Sequence
New	Raw
Open Ctrl+O	LUT
Open Next Ctrl+Shift+O	Text Image
Open Samples	Text File
Open Recent	Results
Import •	Table
Show Folder	URL
Close Ctrl+W	Stack From List
Close All Ctrl+Shift+W	TIFF Virtual Stack
Save Ctrl+S	AVI
Save As	XY Coordinates
Revert Ctrl+Shift+R	
our onit it	HUF5
Page Setup	Analyze
Print Ctrl+P	MHD/MHA
Export +	Koala Binary
Quit	DF3
Quit	FIB-SEM
Fix Funny Filenames	MRC Leginon
Make Screencast	PDF
at ij.IJ.runPlugIn(Extract Images From PDF
8,193 KB at ij.IJ.runPlugin(DAT EMMENU
2,567 KB at HandleExtraFi	DM3 Reader
6 KB at HandleExtraFi	TorstenRaw GZ Reader
65 KB at HandleExtraFi	Nrrd
11 KB at ij.IJ.runUserPlu	ICO
6,095 KB at ij .U.runPlugin(lcns
1,436 KB at ij.io.Opener.ot	SVG
at ij.io.Opener.op	LSS16
at ij.io.Opener.op	IPLab Reader
at ij.io.Opener.op	Animated Gif
at ij.io.Opener.op at ij.io.Opener.op	LSM
at ij.ouopener.up at ij.plugin Drag4	QuickPALM
at ij.plugin.Drag/	Read Reconstruct Project
at java.lang.Thre	SPIM
	TrakEM2 XML

2. Using a Fiji resident plugin (Import)

EXERCISE 1 Try to open example 1C

File > Import > HDF5 Point to the file example 1C

The file contains 3 datasets (!)

- Select /Cells in data set path
- load as 'Individual stacks'
- Click 'Load'

				_		×	
Select data	sets						
data set path	size	type	ele	ement size	[um]		
/Cells	408×406	uint8	1.0×1.0×	1.0			
/Confocal	25×400×400	uint8	0.054455	×0.054455	5×0.0544	55	
Lond as	467 076		10.10	1.0			
Codu as							
	STACKS						
 individual hyperstacks (custom layout) 							
- data set la	ayout:	zyx					
Combine to							
O hyperstack	(multichannel)					
hyperstack	(time series)						
O hyperstack	(multichannel	time series)					
- Number o	of channels:		1	\diamond			
Load			Car	ncel			

💵 (Fiji Is Just) ImageJ		A	
File Edit Image F	Process A	Image Sequence	
New	•	Raw	
Open	Ctrl+O	LUT	
Open Next Ctr	l+Shift+O	Text Image	
Open Samples	•	Text File	
Open Recent	•	Results	
Import	•	Table	
Show Folder	•	LIRI	
Class	Chili	Stack From List	
Close All Ott		TIEE Virtual Stack	
Close All Ctri	+Snπ+vv		
Save	Ctrl+S	Avi	
Save As	-	XY Coordinates	
Revert Ctr	l+Shift+R	HDF5	
Page Setup		Analyze	
Print	Ctrl+P	MHD/MHA	
Event		Koala Binary	
Export		DF3	
Quit		FIB-SEM	
Fix Funny Filename	s	MRC Leginon	
Make Screencast		PDF	
at ii.l	J.runPluain(Extract Images From PDF	
8,193 KB at ij.l.	J.runPlugin(DAT EMMENU	
2,567 KB at Ha	indleExtraFi	DM3 Reader	
6,337 KB at Ha	indleExtraFi	TorstenRaw GZ Reader	
6 KB at Ha	indleExtraFi	Nrrd	
11 KB at ii.l	J.runUserPli	ICO	
6,095 KB at ij.l.	J.runPlugin(lens	
1,436 KB at ij.l.	J.runPlugin(SVG	
1,436 KB at ij.id	o.Opener.op	15516	
at ij.id	D.Opener.op	IPI ab Reader	
atij.it	n Opener or		
at ij.id	D.Opener.op		
at ij.id	o.Opener.op	LSM	
at ij.p	olugin.Drag/		
at ij.p	lugin.Drag/	Read Reconstruct Project	
at jav	raliang.Thre	SPIM	n
		TrakEM2 XML	
UNIVERSITÉ DE FRIBOURG	V	NATIONAL CENTER OF COMPETEN	VCE
UNIVERSITÄT FREIBURG		IN RESEARCH	
3. Using a plugin from the repository

From the repositories

- 5 Possibilities:
- Native file formats
- Use Import (Fiji only!)
- Use a repository
- Use a plugin
- Through RAW import (raster graphics only)

 Help > Update 	•	Help > Update	
--------------------------------------	---	---------------	--

Nan	ne		Status/Ac	tion	Updat	e Site		
plugins/bio-formats_plugins.jar			Update it		Java-8			
jars/bio-formats/formats-api.jar			Undato it		Java 8			
jars/bio-formats/formats-bsd.ja	4	🛓 Manage update sites					×	
ars/bio-formats/formats-gpl.jar	Α	Name		LIRI		Host	Directory on Hos	
ars/bio-formats/turbojpeg.jar		Image.I	https://update.imag	ei net/		11001	▲	
		Fiii	https://update.fiii.sc	/				
		Fiji-Legacy	https://sites.imagei	.net/Fiii-Legac	1		=	
	~	Java-8	https://sites.imagej.	net/Java-8/				2 0
		2015-Conference	https://sites.imagej.	net/2015-Cont	erence/			Z. 3
	~	3D ImageJ Suite	https://sites.imagej.	.net/Tboudier/				
		3Dscript	https://romulus.oice	e.uni-erlangen.	de/updatesite/			rep
		ActogramJ	https://romulus.oice	e.uni-erlangen.	de/imagej/upd			
		AIC Janelia - Course	https://sites.imagej.	.net/AICjanelia	course/			to a
		Angiogenesis	https://sites.imagej	net/Angiogene	sis/			
		AngioTool	https://sites.imagej.	net/AngioTool/				100 +
		Archipelago	https://sites.imagej.	.net/Lindsey/				IΠL
	┝──	Axonet	https://sites.imagej	net/AxoNet/				_
		BACMMAN	https://sites.imagej.	net/Ljp/				For
	┢╞╡	BAR	https://sites.imagej.	net/Pasic/				
		BigDataProcessor	https://sites.imagej	net/BigDatePr	ncessor/			
		BIG-EPEI	https://sites.imagej	net/BIG-EPEL/	000000			
		BigStitcher	https://sites.imagej	net/BigStitche	1			
		BigVolumeViewer Demo	https://sites.imagej	.net/BigVolume	Viewer/			
	V	Bio-Formats	https://sites.imagej	.net/Bio-Forma	ts/			
Manago undato sitos		Biomat	https://sites.imagej.	.net/Biomat/				
manage upuale siles		Biomedaroup	https://sites.imagei	net/Biomedar	un/			

Select the repositories you wish to add
 In this case: Bio-Formats

1 Choose

Manage update sites

3. Close and

4. Apply changes

3. Using a plugin from the repository

5 Possibilities:

- Native file formats
- Use Import (Fiji only!)
- Use a repository
- Use a plugir
- Through RAW import (raster graphics only)

니지	n	~		4-	+0
пе	μ	/	up	ud	ie

(i

ImageJ Updater		- D			
Name	Status/Action	Update Site			
ugins/Sholl_Analysis.jar ugins/Simple_Neurite_Tracer.jar ugins/Digdataviewer_fiji.jar ugins/Dio-formats_p ugins/Dio-formats_p	Update it Update it Update it Update it	Java-8 Java-8 Java-8 Java-8 Java-8			
s/filamentDetector, s/bigdataviewer-co s/bigdataviewer-vis s/bio-formats/form	Checksummer: jar	s/ant-1.9.7.jar			
rs/bio-formats/forma rs/bio-formats/forma rs/bio-formats/ome-:	Show Details	Cancel			
rs/bio-formats/specification.jar rs/bio-formats/turbojpeg.jar rs/imglib2-cache.jar rs/n5.jar rs/n5-ij.jar	Update it Update it Update it Update it Update it	Java-8 Java-8 Java-8 Java-8 Java-8 Java-8			
Manage update sites	Apply changes	Advanced mode Cancel			
🗹 3D ImageJ Suite	https://sites.imag	ej.net/Tboudier/			
Bio-Formats	https://sites.imagej.net/Bio-Formats/				
🖊 CSBDeep	https://sites.image	j.net/CSBDeep/			
🖊 DeeplmageJ	https://sites.image	j.net/DeepImageJ/			
HDF5	https://sites.image	j.net/Ronneber/			
HDF5 Labkit	https://sites.image https://sites.image	j.net/Ronneber/ j.net/Labkit/			

Please restart ImageJ and call Help>Update to continue with the update

OK

File > import > Bio-Formats

or

×

Plugins > Import > Bio-Formats > Bio-Formats Importer

EXERCISE 1

Try to open example 1B with the Bio-Formats plugin

Stack viewing —		Metadata viewing	Information
View stack with: Hyperstack		Display metadata Display OME-XML metadata Display ROIs ROIs Import Mode: ROI management	View stack with - The type of image viewer to use when displaying the dataset. Possible choices are: • Metadata only - Display no pixels,
		Memory management	 only metadata. Standard ImageJ - This option is deprecated (i.e. intended for use by old macros only). Please use <i>Hyperstack</i> instead. Hyperstack - Display the pixels in
Swap dimensi	ons s	Crop on import	 Data Browser - Display the pixels in the multidimensional Data Browser viewer. The Data Browser has some editional for the pixels of the pixels
Concatenate s	Default	 Split into separate windows Split channels Split focal planes Split timepoints 	 audultation reactives on top of the normal Imagel hyperstack. Image5D - Display the pixels in Joachim Walter's Image5D viewer. Requires the Image5D plugin. View5D - Display the pixels in Rainer Heintzmann's View5D viewer.

3. Using a plugin from the repository

5 Possibilities:

- Native file formats
- Use Import (Fiji only!)
- Use a repository
- Use a plugir
- Through RAW import (raster graphics only)

Update lists / repositories

ImageJ

Fiji **3D ImageJ Suite** 3Dscript ActogramJ AIC Janelia Angiogenesis AngioTool Archipelago AxoNet BACMMAN BAR BaSiC **BigDataProcessor BIG-EPFL BigStitcher BigVolumeViewer Demo Bio-Formats** Biomat Biomedgroup BioVoxxel Blind Analysis Tools BoneJ CALM CAMDU CATS CellTrackingChallenge CIP CircleSkinner clij clij2 clijx-assistant cliix-assistant-extensions ClearVolume CMCI-EMBL **CMP-BIA tools CMTK Registration** Colocalization by Cross Correlation Colour Deconvolution2

Bio-formats repository

3i SlideBook AIM AVI (Audio Video Interleave) Adobe Photoshop PSD Alicona 3D Amersham Biosciences Gel Amira Mesh Amnis FlowSight Analyze 7.5 Andor Bio-Imaging Division (ABD) TIFF Animated PNG Aperio AFI Aperio SVS TIFF Applied Precision CellWorX Axon Raw Format **BD** Pathway Becker & Hickl SPCImage Bio-Rad Gel Bio-Rad PIC **Bio-Rad SCN** Bitplane Imaris Bruker MRI Burleigh Canon DNG CellH5 CellVoyager Cellomics DICOM DeltaVision ECAT7 EPS (Encapsulated PostScript) Evotec/PerkinElmer Opera Flex FEI FEI TIFF Gatan Digital Micrograph Gatan Digital Micrograph 2 Hamamatsu Aquacosmos NAF Hamamatsu HIS Hamamatsu VMS

4. Using a plugin from the internet

5 Possibilities:

- Native file formats
- Use a repository
- Use Import (Fiji only!)
- Use a plugin
- Through RAW import (raster graphics only)

Save Plu	gin, Macro or Script	- • ×					
Enter path or folder name:							
/home/dimitri/Software/Fiji.app/plugins/							
Filter		· · · · · · · · · · · · · · · · · · ·					
*							
Folders	Files						
	3D_Blob_Se	egmentation-3.0. 🏻					
Analyze/	3D_Objects	:_Counter-2.0.1.ji 🛑					
Examples/	3D_Viewer-	4.0.5.jar					
JRuby/	AnalyzeSke	eleton3.4.2.jar					
Macros/	Anisotropic	_Diffusion_2D-2.					
Scripts/	Archipelag	o_Plugins-0.5.4.ja					
Utilities/	Arrow2.0	.2.jar					
	Auto_Local	_Threshold-1.11.					
Enter file name:							
ImageDecorrelationA	nalysis_plugin.jar						
,							
Save	Filter	Cancel					

Installing a plugin from a downloaded .jar file (<u>https://imagej.nih.gov/ij//plugins/tia-reader.html</u>)

3 ways of installing the jar file (it is also provided):

- 1. Drag and drop the file onto Imagej (and save in the plugin folder)
- 2. Plugins > install plugin... and point to the .jar file
- 3. Copy the .jar file into the plugins folder of your FIJI folder

💵 Message		×
NOTICE: Please restart ImageJ to c	omplete plugin or macro installation, add new command	Is to the menus, etc
	ОК	
In any case: Restar t	t FIJI (close it and start it aga	iin)
In any case: Restar	t FIJI (close it and start it aga	iin)

Provided on the ImageJ website

ASCII header format SPE Images PICT, Targa using Jimi **Biorad Z-Series** Leica SP multi-channel stacks QuickTime Jimi Stack Writer **AVI Writer** JMF Reader Animated Gif PDS Images **AVI Reader** LSM Reader (Zeiss LSM confocal microscopes) Quess RAW IPLab Reader Excel Writer Multi FDF VFF Opener OpenSIF (opens Andor SIF files) EXIF Reader Bruker NMR Zeiss ZVI Reader ISAC images (e.g., Fuji BAS scanners) Gatan DM3 Reader **Deltavision Opener** Nanoscope AFM files NIfTI Input/Output UNC format images **PDF** Writer Leica SP2 TIFF Sequence EPS (Encapsulated PostScript) Writer PerkinElmer Reader Nikon ND2 Reader (Windows only) TIA Reader (FEI/Emispec .ser files)

4. Using a plugin from the internet

EXERCISE 1 Install the TIA reader plugin (TIA_Reader.jar) if you have not done so Then try to open Example 1D, the .ser file, using plugins > input/output > TIA reader

Does it work?

Installing a plugin from a downloaded .jar file

- drag and drop the .jar file onto Imagej or click Plugins > install plugin...
- Save it in the plugins folder of your FIJI folder

- Point to the .ser file
- Click 'Open'

4. Using a plugin from the internet (short resolution intermezzo)

EXERCISE 1

Install the image decorrelation plugin as well (ImageDecorrelationAnalysis_plugin.jar).

- Open Example 1B Header Cells.lsm with the Bio-Formats plugin (Plugins > Bio-Formats > Bio-Formats Importer)
- Run the Image Decorrelation plugin on the blue channel (Plugins > Image Decorrelation Analysis)

Image Decorrelation A	Ana – ×
Settings	
Radius min: 0	Radius max :
Nr: 50 Ng	: 10
✓ Do plot □ Batch state	ck 🗌 Batch folder
Compute	About

4. Using a plugin from the internet (short resolution intermezzo)

EXERCISE 1

Install the image decorrelation plugin as well (ImageDecorrelationAnalysis_plugin.jar).

- Open Example 1B Header Cells.lsm with the Bio-Formats plugin (Plugins > Bio-Formats > Bio-Formats Importer)
- Run the Image Decorrelation plugin on the blue channel (Plugins > Image Decorrelation Analysis)

Total file size (in bytes) = Header size + Image data size

Data: 4 bytes

Total file size: 9 bytes

Total file size (in bytes) = Header size + Image data size

EXERCISE 1

Import through RAW (file > import > Raw...) of Example 1A, the .tif file and Example 1D, the .SER file

Example 1A

1. A priori information: Camera size = 600x412 px x 8 bit depth

Size:

2. Use your operating system to find the file size (in bytes) of Example 1A

🧟 Example 014	A - non-native file formats - AuPbSn40 Pr
General Secu	urity Details Previous Versions
	Example 01A - non-native file formats - AuPb Sn40
Type of file:	TIFF image (tif)
Opens with:	Windows Photo Viewer
Location:	Y:\Data\Microscopy\Dimitri\Meetings and teaching\
Size:	241 KB (247,348 bytes)
Size on disk:	245 KB (250,880 bytes)
Created:	26 February 2016, 11:20:32
Modified:	26 February 2016, 11:20:32
Accessed:	26 February 2016, 11:20:32
Attributes:	Read-only Hidden V Archive
	OK Cancel Apply

241 KB (247,348 bytes)

Size on disk: 245 KB (250,880 bytes)

Example 1D

Camera size: Veleta at AMI (2048 x 2048, 16 bit) Use your operating system to find the file size Idea: we will only read the DATA – and jump over the HEADER

EXERCISE 1

Import through RAW (file > import > Raw...) Example 1A, the .tif file Example 1D, the .ser file

Example 1A

- 1. Camera size: 600x412 px x 8 bit
- 2. 247 348 bytes

Example 1D

- 1. Camera size: Veleta at AMI (2048 x 2048, 16 bit)
- 2. 8 388 754 bytes

File > import > RAW...

If your image is black, update brightness contrast: Image > adjust > Brightness / contrast... And click auto, or set (between 100 and 450)

Idea: we will only read the DATA – and jump over the HEADER

Data size: 600 x 412 = 247 200 bytes
 File size : 247 348 bytes

Therefore: header is 247 348 – 247 200 = 148 bytes

🕌 Import>Raw		×	
Image type:	8-bit	•	
Width:	600	pixels	
Height:	412	pixels	
Offset to first image:	148	bytes	
Number of images:	1		
Gap between images:	0	bytes	
 White is zero ✓ Little-endian byte ✓ Open all files in fo ✓ Use virtual stack 	order bider		
C	K Cance	Help	
]
ndian: big-e	ndian	is ofte	n an "Ap

 Data size: 2048 x 2048 x 2 = 8 388 608 bytes (why x 2??)
 File size : 8 388 754 bytes
 Therefore: header is 8 388 754 - 8 388 608 = 146 bytes

🛓 Import>Raw		×				
Image type:	16-bit Sign	ed 🔻				
Width:	2048	pixels				
Height:	2048	pixels				
Offset to first image:	146	bytes				
Number of images:	1					
Gap between images:	0	bytes				
White is zero	White is zero					
✓ Little-endian byte	order					
Open all files in folder						
🗌 Use virtual stack						
	OK Cancel Help					

Header

Files may (must) contain meta data (additional, useful information about the image) F.A.I.R. Principles (https://www.go-fair.org/), open source data

Open Example 1D using File > **import > RAW...** Select Image > Show info...

Title: Example 1D - non-native file formats - SiO4.ser Width: 2048 pixels Height: 2048 pixels Size: 8MB Pixel size: 1x1 pixel^2 ID: -77 Bits per pixel: 16 (signed) Display range: 100 - 450 No threshold Open Example 1D **using the TIA Plugin** > Select Image > Show info...

...

Title: /home/.../Example 1D - non-native file formats.ser Width: **8.3029 microns** (2048) Height: **8.3029 microns** (2048) Size: 8MB **Resolution: 246.6609 pixels per microns** Pixel size: **0.0041x0.0041** microns^2 ID: -63 Bits per pixel: 16 (unsigned, grayscale LUT) Display range: 0-922 Pixel value range: 0-922 Image: 1/1 (1) No threshold

Summary: Howto open your data in FIJI

Native file

formats Use TIF whenever possible Forget JPEG (has no header) Metadata properly imported

FIJI Import Using the repositories or from the internet

Repositories 500+ scientific file formats available through Repositories. Metadata is (very very often) imported E.g. Zeiss, Leica, Olympus, Nikon, FEI, ... Install a plugin Using the repositories or from the internet Raw import Last resort, if everything else fails Typically: *a priori* information about the file needed (dimension, bit depth) Opens only the image data. No metadata.

Metadata is a love note to the future

Part III: Histograms

- Histograms of grayscale image
- Color images
- Histogram normalization and histogram equalization

EXCERCISE 2

Open Example 1A and produce a histogram

Analyze > histogram (or CTRL+H)

• What can you deduce from the histogram?

Bins: 3

Value: 85

- Try: List, Copy, Log, Live
- Save the histogram itself to a TIFF?
- Also try CTRL+ALT+H

Bin Width: 85.333

Count: 55188

N: 247200 Mean: 125.901 StdDev: 73.247 Value: 101

Min: 0 Max: 255 Mode: 201 (3164) Count: 129

N: 247200 Mean: 125.901 StdDev: 73.247 Value: 80

Min: 0 Max: 255 Mode: 201 (3164) Count: 211

Histogram a representation of the distribution of numerical data. *Pearson, K. (1895)*

The intensity distribution of the image (= it plots the number of pixel for each intensity or tonal value)

EXCERCISE 2

Open Example 2A and 2B and look at the image

- Do you see a difference between the images?
- Check the histograms
- Do you see a difference between the histograms?

EXCERCISE 2 Open Example 2A and 2B and look at the image

What can you deduce from the histogram?

- 1. Bitdepth: 8 bit image (ranging from 0 to 255)
- 2. Pixel value distribution:

Mean pixel value, variance of the intensity, Min, Max & modal

- 3. Type of distribution: e.g. bimodal, exponential, ...
- 4. Spikes: image normalization or equalization occurred (see later)
- 5. Contrast and Lookup table (see later): the range between maximum and minimum (in this case: 255)
- 6. Dynamic range: the number of distinct pixel values. Eg. Compression will affect the dynamic range
- 7. Overillumination effects
- 8. The intensity at each grayscale value

Histograms \rightarrow Linear transfer function

Each image intensity value is mapped to its corresponding screen value: **The linear transfer function** is running from bottom left to top right

The linear transfer function assigns every original pixel value a new value on a linear scale. The endpoints of the function determine what value is white, and what black

Histograms \rightarrow Linear transfer function

EXCERCISE 3

Load Example 3 – GrayscaleLUT, and read out the grayscale values in the ImageJ statusbar.

- Use (+ to zoom in, to zoom out)
- Hoover with the mouse over the image and check the status bar in ImageJ
- Image > adjust > Brightness/Contrast (CTRI+Shift+C)
- Make a histogram of this image. How do you interpret the histogram?
- Play around with the Minimum and Maximum in the transfer function (Image > Adjust> Brightness/Constrast). Check the effect on the values.
- Do you delete information?

Histograms: other lookup tables (LUTs)

Image = 2D array of numbers

Grayscale = giving a graphical meaning to these Look-Up Tables.

But Grayscale is just one of these Look-Up tables!

Histograms: other lookup tables (LUTs)

EXCERCISE 3

Load Example 3 or Example 1A and try different LUTs

- Image > Lookup Tables > ...
- Image > Color > Show LUT
- Change brightness and contrast with some exotic LUTs
- You can make your own LUT using Image > color > Edit LUT

Color: the color model

СМҮК

A color model

is a method of describing a color. Color models can be represented as tuples of numbers, typically as three or four values or color components.

Green -a*

RGB

- 3 values: Red, green & blue
- Additive

- 4 values: Cyan, Mangenta, Yellow and black
- Subtractive

L*a*b (CIELAB)

 3 values: Lightness, a (green to red) and b (blue to yellow). Human vison based.

Yellow

Red

+a*

Ш

RS

- Additive White

Blue

Black

HSV

- 3 values: Hue, Saturation and Value

Color: the color space

A color space

is a way of mapping real colors to the color model's particular values. the goal having reproducible, unambiguous representations of color – whether such representation entails an analog or a digital representation.

Based on human perception (uniform color spaces) CIE 1931 XY CIEUVW HSLuv

Non-uniform color spaces

sRGB (Adobe) REC 2020 (UHDTV, covers about 75% of the visible colors)

Color: the color gamut

The color gamut The entire range of colors and tones achievable by an imaging system (eyes, printer, display)

- Color image = 3 grayscale images combined (=composite).
- with a red LUT
- With a green LUT
- With a blue LUT

They are also called RGB images, or 24 bit images (=3x8 bit)

0

- Color image = 3 grayscale images combined (composite).
- with a red LUT
- With a green LUT
- With a blue LUT

Image – red data Image – green data Image – blue data

BIO-INSPIRED MATERIALS

IN RESEARCH

Header

- Color image = 4 grayscale images combined (composite).
- with a cyan LUT
- With a magenta LUT
- With a yellow LUT
- With a black LUT

They are also called CMYK images, or 32 bit color images (=4x8 bit)

Header Image – cyan data Image – Magenta Image – blue data

- Color image = 4 grayscale images combined (composite).
- with a cyan LUT
- With a magenta LUT
- With a yellow LUT
- With a black LUT

They are also called CMYK images, or 32 bit color images (=4x8 bit)

Header Image – cyan data Image – Magenta Image – blue data

Measuring color

Standard: using a spectrophotometer

Measuring color

Reflectance photospectrometer output

Cytoviva: measuring reflectance spectra

More tricky: using a commercial camera

 \rightarrow Need for calibration using a color calibration chart

Note: non-linear shifts in Red, Green and Blue! Output: RGB color space

Measuring color

Converting color to grayscale

Converting formats, saving data

EXCERCISE 4

Load the clown test image and convert it to another format

- File > Open Samples > Clown
- Image > Type
- Change the type to e.g. 8-bit and check what happened to the size
- Can you change back to RGB (without Edit > undo, off course)?
- Save as 8-bit, 16-bit and RGB TIFF. Compare file sizes

Bit depth	Channels	Filesize (bytes)	Data	Header
8 bit	1	64 236 bytes	64 000 bytes (=320x200x1)	236
16 bit	2	128 254 bytes	128 000 bytes (=320x200x2)	254
RGB	3	192 166 bytes	192 000 bytes (=320x200x3)	166
32 bit	4	256 266 bytes	256 000 bytes (=320x200x4)	266
L*a*b (3x32 bit)	3x4	768 672 bytes	768 000 bytes (320x200x4x3)	672

- Convert to CMYK: https://imagej.nih.gov/ij/plugins/cmyk/index.html

Histogram normalization, histogram equalization

Goal: to use the entire range of intensities in the histogram

Solutions:

- Histogram normalization (histogram stretching)
- Histogram equalization

WARNING:

- 1. GIGO
- 2. We will now **change the actual data**, not longer only the transfer function.

Histogram normalization

Histogram normalization: attention!

Problem: hot/cold pixels

UNIVERSITÄT ERFIBURG

Histogram equalization

= the normalization of the cumulative histogram of the image

*PMF = Probability mass function *CDF = Cumulative distribution function = cumulative histogram

Histogram equalization

Note to the not-so-mathematically-inclined: This is exactly the same formula as 3 slides back, but now we use the newly created cumulative histogram instead of the histogram

63

128

255

159

128

223

5	20	40
20	30	30
50	100	50

Values 5	CDF* 0.111	CDF norm 0	8 bit 0	0
20	0.333	0.25 🖌	63	
30	0.555	0.5	128	63
40	0.666	0.625	159	
50	0.888	0.875	223	
100	1	1	255	223

= the normalization of the cumulative histogram of the image

*PMF = Probability mass function *CDF = Cumulative distribution function = cumulative histogram

Histogram equalization: attention!

Watch out with Histogram equalization!

- Unrealistic artefacts in 8 bit (grayscale images)
- Image gradients in images with low depth (it will further reduce dynamic range)
- Undesired effects when histogram is not continuous

Histogram equalization: attention!

Process > Enhance contrast	Saturated pixels: 0.3
Amount of Saturated pixels: default = 0.3% (but play with it)	□ Normalize
(usually, you want this very low)	□ Equalize histogram

Х

%

Cancel Help

🕌 Enhance Contrast

OK

Histogram equalization: attention!

Example (Galaxy M51)

300x240 pixels; RGB; 281K

300x240 pixels; RGB; 281K

Copy

List

Live

Log

Histogram equalization

300x240 pixels; RGB; 281K

D

ICE

Part IV: Overlays and preparation for publication

COMMANDER CI

KOENIG & BAUER

Overlays

- Annotations and scale bars On KBA
- Preparing figures for publications
- Inkscape
- FigureJ

24 22

Overlays

Overlays are **vector graphics**: non-active, non-destructive selections displayed 'over' the rastered graphics data.

Overlay selections are

- Mathematically-defined **paths** (=not rastered), not affected by scaling, i.e., do not become pixelated.
- Overlays are **saved in the header** (e.g. of tif images), and do not need to be saved externally.
- Examples: Scalebars, annotations, ...

Selections

EXCERCISE 6

Open Example 4 – Manual scale

$\Box \bigcirc \Box \heartsuit \checkmark \measuredangle +, \land \land \land \And$

- Select the line selection and draw lines on the image. Check the status bar. Length? Unit of length?
- Try out the other selection options
- Right-click the icons with a red triangle at the bottom right.
- Use Analyze > Tools > ROI manager to
 - Add selections, rename them and remove them
 - Save selections to a file and open them again

🛽 🗉 Rounded Rectangle Tool	🛚 🗉 Arrow Tool	😣 🗊 Point Tool	😣 🗐 🗊 🛛 ROI Man	ager
Stroke width: 1 Corner diameter: 20 Color: vellow Fill color: none OK Cancel	Width: 2 Size: 30 Color: Yellow 3 Style: Filled 3 Outline Double head Keep after adding to overlay OK Cancel	Type: Hybrid Color: Yellow Size: Small Auto-measure Auto-next slice Add to overlay Add to ROI Manager Label points OK Cancel	test 🔺	Add [t] Update Delete Rename Measure Deselect Properties Flatten [F] More » I Show All I I Labels

Scale bars

EXCERCISE 6

Add a scale bar to Example 1D (the .ser file)

- Open Example 1D (Plugins > Input-Output > TIA reader)
- Check the info in the header: CTRL + i (or Image > Show info ...)
- Analyze > Tools > Scale bar...

Width: 8.3029 microns (2048) Height: 8.3029 microns (2048) Size: 8MB Resolution: 246.6609 pixels per microns Pixel size: 0.0041x0.0041 microns^2

Scale bars

EXCERCISE 6

Try to repeat for Example 4 – Manual scale. Retrieve the scale and add a scale bar to a cropped version of Example 4

- Open Example 4
- Image > show info...

Scale bars

Annotations

EXCERCISE 7

Open Example 4 – Manual scale and annotate the image

Arrows, lines, text

Image > annotate > Arrow..

Accepting the annotation

- Press CRTL+B to make the annotation in overlay (recommended)
- Press CTRL+D to **d**raw the annotation in the image (burn in: convert vector to pixels)

Note: ImageJ/FIJI is not great for annotations

Illustrator, Affinity designer, Inkscape, CorelDraw, ... are superior tools for vector graphics design.

Annotations

EXCERCISE 7

Open Example 4- Manual scale and annotate the image

ow Tool	😣 🗊 Fonts	
	Font: Arial	
e	Just: <u>Center</u> Color: White	
d 💷	Bkgd: None 💷	
2	Size: Size: 5	6
e head after adding to overlay	Angle: 🔤 🗍 🕞 🛛)
OK Cancel	✓Antialiased text	
	C	los

Image > Overlay > List elements

🛛 🔳 🖉

Width: <

Size: Size:

□Outlin □Doubl □Keep

Type	X	Y	Width	Height	Color	Fill	LWidth
Straight Line	396	1070	139	189	white	none	6
Straight Line	58	977	273	164	white	none	16
Straight Line	602	204	245	400	#0036ff	none	8
Text	320	795	422	71	yellow	none	0
Text	923	360	378	68	red	green	0

Preparing for publication - semantics

Some semantics:

Preparing for publication - DPI

Images: from camera to printer: PPI and DPI

Dots per inch (DPI)

is a measure of spatial dot density in printing, in particular the number of individual dots that can be placed in a line within the span of 1 inch (2.54 cm).

Points per inch (PPI) is the same but with concerning electronic displays. Not relevant here.

Rule of thumb: what is the resolution I need to publish my data?Images: at least 300 DPI, but 600 DPI has been requestedLine art: higher: 1200 DPI, but I have seen 2400 DPI requestsGraphs: 600 DPI and up

Low resolution

High resolution

Preparing for publication - Example

Images: from camera to printer: PPI and DPI

Info:

1 inch = 2.54 cm Expected Image width in print: 10 cm Expected printed resolution: 300 DPI

Question: how many pixels wide does my digital picture have to be?

Calculation: Width (printer) = $\frac{10 cm}{2.54 \frac{cm}{inch}}$ = 3.937 inch at 300 dots per inch = 3.9737 inch x 300 $\frac{dots}{inch}$ = 1181 dots

Result:

The image must be 1181 pixels wide to get a 10 cm wide figure at 300 DPI

Dots per inch (DPI)

is a measure of spatial dot density in printing, in particular the number of individual dots that can be placed in a line within the span of 1 inch (2.54 cm).

Resizing and cropping

What happens with my image during resizing? Am I allowed to crop an image? ==> See lecture 2 Advanced Image processing

Preparing for publication - pica

Publishers and printers work often with PICA (pc) and POINTS (pt). 12 points (pt) 1 pica (pc) Commande (stoup 1/6 of an inch 1 pc cm 1 pc 4.23333 mm in 1 pt 0.35277 mm pt à Text height 1 pica (12 points) Text width (page) pc 41 pica • Column width (2 / page) 20 pica mm Central space 1 pica

px

%

rl+A)

ribu

Info

Expected Image width in print: 20 pc Expected printed resolution: 300 DPI Question: how many pixels wide does my digital picture have to be? **Calculation:** 20 pc = 20/6 inch = 3.333 inch (= 8.333 cm) Width (printer) = 3.333 inch

at 300 dots per inch = 3.333 inch x $300 \frac{dots}{inch}$ = 1000 dots

Result:

The image must be 1000 pixels wide to get a columnwide figure at 300 DPI

nts)	pica (12 point	‡ 1 ₁	ay a h of air.	da o
ontent/4/1/11	http://www.particleandfibretoxicology.com/content	u.	Particle and Fibre Toxicology 2007, 4:11	Pa
hy NP cause particle has 91. Unfortu- erokes the loods such as other hand, into cells are of distinguish be identified .g. early and the compan- microscopic to study free well as their [31]. Impor- orphological mical emphy- sure) and the many fusions or which ster- and efficient	needs to be studied to understand how and why NI cellular responses and whether a targeted partic reached its target cell compartment [28,29]. Un- nately, NP may not always be distinguishable from lar organelles by conventional TEM which evok requirement of analytical microscopic methods as energy filtered TEM (FFTEM) [16,30]. On the other when the entering mechanisms of particles into cu- under investigation it may be necessary to disti- between cellular compartments that cannot be ide by their more and the present as a two-dimension filtered that the second state of the second structures intractures induling NP present as a two-dimension filtered that the second structure in the cellular of approach by electron tomography is distribute to su- interaction of NP with cellular organelles as well a 3D shape and size after contact with the cells [31]. I tarity, it will be necessary to analyze the morpho- alterations of the lung (e.g., investigate potential e sema development upon long-term NP exposure) a distribution characteristics of NP in palumonary and cells in appropriate quantitative terms for white cology offers a great number of unbiased and et methods [32-34].	s more than 10,000 ce area of approxi- face of the human normous number of tri inhalation parti- tural and functional the include the sur- ayer with the muco- ing basement mem- ng in or underneath to their size which to their size which to their size which to the risze which to the size which the size which the size which the size which the size which the size which the size which	1. Introduction Each day a human inhales and exhales littes of air. With an epithelial surface mately 140 m ² [1], the internal surfi- lungs is destined to interact with an en- aithome particles with each horeath. Afti- cles encounter several protective structu- barriers of the respiratory tract whild factant film [2-4], the aqueous liming la ciliary escalator [5], airway and alveola 8], the epitheliam with the underlyin brane [9,10], and dendritic cells residin the epithelial layer [11]. Particles can be classified according to predominantly defines to which con lungs they gain access [12]. In recen- matter at least in one dimension small become a focus of pulmonary particle in one dimension will be referred to as although the surfaces exists [20], co their on derived nano-sized particles are unu ulterafine anvitates to distinguish hum 6	L. Ear Intrimation Intrimatio Intrimatio Intrimatio Intrimatio Intrimatio Intr
IP research is g techniques We are con- awareness of TEM to NP se problems. optimize the he appropri- equires opti- optimize the dimitations on of more or NP-related	Though the importance of TEM analyses in NP reservation of the importance of TEM analyses in NP reservation is still rare. We are the paralities quantification is still rare. We are the paralities when applying conventional TEM research and the possibilities to overcome these profile parael efforts to standardize and optim generation and exposure systems of NP 153 the application of microscopic techniques require mization. Therefore, this review aims to procomprehensive overview of advanced TEM tech and a critical appraisal of their potentials and limit in order to simulate the implementation of advanced and quantitative TEM methods for NP-research in the respiratory trac.	from synthetic NP), al obvious reasons, and with a profile health effect and profile of the synthesis of the health effect and profile of the synthesis of the profile of the synthesis of the profile of the synthesis of the synthesis NP in con- ne material [23,24], by basically relies on systochemical prop- tigeal reaction of the exposure [25,26]. Lengte to researchers is also of particular is inbaled NP new	ultrafine particles to distinguish them fit The growing interest in NP has severa First of all, there is epidemiological nano-sized fraction of particles associa- tion is a major contributor to adverse h- used to air pollution [21,22,2]. Additi number of experimental studies have enhanced toxicological potential of sy trast to larger sized particles of the same may approximate the studies of the part of the studies of the same while the progress of nanotechnology the fact that NP may have different phy- eries than larger sized particles of the has been recognized that these different be accompanied by a different biologi cells of the respiratory tract upon Although this fact clearly poses a chall involved in pulmonary toxicology. It is interest for respiratory medicine size.	ult Th Fir na tio ut ut ut tr nu tr nu tr nu tr hat th be cele cele cele th th th th th tr na tio tr na tio tr na tio tr na tio tr tr na tio tr na tio tr na tio tr na tio tr na tio tr na tio tr na tio tr na tio tr na tio tr na tio tr tr tr tr na tio tr tr tr tr tr tr tr tr tr tr tr tr tr
	generation and exposure systems of NP [35] are application of microscopic techniques r mization. Therefore, this review aims to comprehensive overview of advanced TEs and a critical appraisal of their potentials an in order to stimulate the implementatis advanced and quantitative TEAt methods for esearch in the respiratory tract. 2. Focus A: Transmission electron mi methods 2.1. Fixelian and sembedding	ne material [23,24]. y basically relies on systochemical prop- ne same material, it nt features may also sical reaction of the exposure [25,26]. lenge to researchers is also of particular ce inhaled NP may improved medical	trast to larger sized particles of the sam While the progress of nanotechnology the fact that NP may have different phys- erites than larger sized particles of the has been recognized that these different be accompanied by a different biologi cells of the respiratory medicine since Although this fact clearly poses a chall involved in pulmonary toxicology. It is interest for respiratory medicine since effer an innovative approach for an examinent [27].	tra Wi ert has be cel Alt inv int frac

Where then is the justification to of the interaction of NP with cells of the respirate ystem? First of all, it is of principal interest to investig whether the morphology of the tissues and ceils of interest tiques as well as specific questions of a particular stud hanges following NP exposure. Usually, conventional significantly influence the choice of the fixation and light and electron microscopic methods will suffice to embedding method. Currently, there are two majo ddress these questions. Second, however, the localiza- approaches to fix biological samples, viz. chemical or n and distribution of particles within tissues and cells physical fixation. For the lung as an entire organ, there i

ion of cells and tissues aims to pr is as close to the living state as possib

ed, different electron microscopic tech

Finished!

✓ Congratulations,You finished Part I, Basics!

