Introduction to ImageJ Session 4: 3D

Dimitri Vanhecke

UNIVERSITÉ DE FRIBOURG UNIVERSITÄT FREIBURG

FNSNF

Swiss National Science Foundation

Going digital - what is a digital image?

A digital image is an ordered rectangular array (or grid) of integers (numbers: $\mathbf{0 , 1 , 2 , 3} \ldots$). Each element (=number) in the grid is also known as a picture element or 'Pixel'

Spectrum

1 dimensional array

Image
2 dimensional array

Stacks

3D array
(= volume stack or video/Timelapse

		$\begin{aligned} & \text { 78 } \\ & 167 \\ & 195 \\ & 195 \\ & 181 \\ & 206 \\ & 221 \\ & 190 \\ & 159 \\ & 170 \\ & 164 \\ & 165 \\ & 196 \\ & 182 \\ & 182 \end{aligned}$	86 188 188 191 192 202 230 188 187 186 184	$\begin{aligned} & 65 \\ & 201 \\ & 188 \\ & 189 \\ & 194 \\ & 203 \\ & 232 \\ & 192 \\ & 195 \\ & 192 \\ & 170 \\ & 185 \\ & 185 \\ & 180 \\ & 195 \end{aligned}$

BIO-INSPIRED MATERIALS

Filters, point operators, ... and stacks

Upon running a function over a stack, you will often get a question:
() Process Stack?
Process all 282 images? There is
no Undo if you select "Yes".
Yes No Cancel

Hence, all

- Filters
- Bandpass filters
- Point operators
- Binary functions
- etc...

Sobel filter on RGB Lena

Are also valid for stacks

Stacks

Prerequisites

- All the slices in a stack must be the same size (X, Y) and bit depth.
- The slice thickness is considered constant (Z)

Type of stacks

1. 2D images with encoded Z information (e.g. AFM)
2. Channels (or layers) are multiple images stored within one file. Typically, they contain different color absorption functions of the same object
3. Z layers are images recorded at different depth positions through the object
4. Time lapse are images recorded at a different time point
5. Hyperstacks ($\mathrm{n}>3$)

Stacks

3D array
(= volume stack or video

1. Height maps

Gwyddion
Open SPM (AFM, SNOM/NSOM, STM, MFM, ...) data analysis software

e.g. AFM height maps

- 2D image
- Pixel value = height = height map

3D Map (XY view, transformed height map) XZ view (10X)

2. Channels

Pseudo-color

= a single channel (grayscale) equipped with a LUT

RGB images (24 bit=3x8bit)

3 layers, reflecting the natural red, green and blue colors (or HSL, CMYK, HSV, ...)

Composite images (flexible: e.g. 5x16bit)

n layers, separated. For example LSM multi channel data

Channels: composite images

Channels tool

Image > Color > Channels tool

Composite: overlaying the layers of choice (also for RGB images) Color: showing only one layer, with LUT. Change the LUT of the selected layer Grayscale: showing only one layer, in grayscale LUT
(Clicking on the channel selector $=$ use the channel scrollbar below the image)
Make composite: splits the color image in its layers
Convert to RGB: joins the layers into a 2D RGB image (you will end up with 1 window) Split channels: makes n windows of each channel
Merge channels: Tool to put n single channels together into a composite stack

© () Merge Channels

Cl (red): Cl -confocal-series.tif $_$
C2 (green): C2-confocal-series.tif \lrcorner
C3 (blue): *None*
C4 (gray): *None*
C5 (cyan): *None*
C6 (magenta): *None*
C7 (yellow): *None*
F Create composite
\lrcorner Keep source images
-Ignore source LUTs

Image > Color > Merge Channels

Combines n images into a composite image

- Prerequisite: all images have the same size (width, heigth and bitdepth)
- Choose the LUT (color)
- Once merged: check the "Arrange" menu entry (Image > color> Arrange...)

Channels: split, arrange, and merge

EXERCISE

Open Example 1

Convert to Composite

Convert a color image to a composite image (Image > color > channels tool: More > make composite)
Split a composite dataset in its grayscale components
Split the three channels (Channels tool: More > split channels)
Optional: change the LUT of each of the grayscale components
Change LUTs if required (Image Lookup tables)

Merge channels

Merge the channels again to an RGB image (Image > color > Merge channels OR Channels tool: more > merge channels)

Change the order of the grayscale channels in the composite dataset
Arrange: Change the order of the layers in the stack (Image > color > Arrange Channels...)
(c)

BIO-INSPIRED MATERIALS
mame

Channels tool: example RGB image

Channels tool: example RGB image

 320×200 pixels; 8 -bit; 62 K

3. Z-stacks

1. File format including the entire Z-stack

Native
TIFF
Non-Native Ism (Zeiss) Use LSM toolbox
lif (Leica) Use Bio-Formats plugin
2. Sequence $=$ a number of 2D images (same $X Y$ size, same bitdepth) in a single folder

File > Import > Image Sequence
Enter or browse the folder path
Filter: regex patterning, e.g. 'tif' will only select images that have 'tif' in their filename

Possibility to reduce the stack

Import options

ลก

Opening sequences

EXERCISE
Open Example 2 (the folder) and import the sequence

图 Import Image Sequence
Dir. Z:DataMMicroscopyDimitriTteachingllmageJ coursellmageJ basicsi Browse
drag and drop target
Type: default -
Filter:
enclose regex in paren
Start
Count 62
Step:
scale: $\sqrt{100}$ \%

- V Sort names numerically

Use virtual stack
\ulcorner Open as separate images

- File > Import > Image Sequence
- Locate the folder
- (you do not see the actual files in the folder)
- Filter: allows filename filtering (e.g. tif will only include files that have tif in the filename)

All images must have the same size! (X, Y and bitdepth!)
Watch out for OS generated thumbnail files
ok Cancel Help

Possibility to open as virtual stack

Opening sequences

EXERCISE

Open Example 2 (the folder) and import the sequence

Stack of 124 Slices, now looking at slice 1
$X=128$
$Y=107$
$Z=124$

Works exactly the same if you would have
 opened a multi-image file (eg. Tiff)

What is the difference between TIF and TIFF?

Move through the

BIO-INSPIRED stack

Operations on Z-stacks

miamaca

Z-Stacks: Extended depth of field

Image > Plugins > Extended depth of field (EPFL: bigwww.epfl.ch/demo/edf)
Projects a brightfield image of a large object in focus based on a focal series

Montage tool

EXERCISE

Try out the tools in the Images > Stack menu and with Example 2

Open a stack, then: Image > stack > Make montage...

包 Make Montage	
Columns:	$\boxed{5}$
Rows:	$\boxed{4}$
Scale factor:	$\boxed{0.50}$
First slice:	$\boxed{1}$
Last slice:	$\boxed{87}$
Increment:	$\boxed{1}$
Border width:	$\boxed{2}$
Font size:	$\boxed{12}$
Г Label slices	
Γ Use foreground color	
OK	Cancel

?8:

Z-Stacks: Reslice (orthogonal rotation)

Other tools:

Radial reslice

orthogonal recon-structions of a
stack by rotating a line ROI around
one end of its center. Useful for data
with rotational symmetry

Dynamic reslice
Creates an arbitrary cross section
along a user-defined line

BIO-INSPIRED MATERIALS

- Minamicentrof ocownerine

4. Hyperstacks

Hyperstacks are multidimensional images, extending image stacks to four (4D) or five (5D) dimensions:
x (width),
y (height),
z (slices),
c (channels or wavelengths)
t (time frames)
Hyperstacks are displayed in a window with 2 or 3 labelled scrollbars. Similarly to the scrollbar in stacks, including a play/pause icon.

3D stack (z=5)

4D stack (z=5, C=2)

5D stack (z=5, C=2, t=51)

Hyperstacks

Videos/timelapse

Out of the box, ImageJ has limited support (no codecs, no audio). However, it can open/close uncompressed AVI formats.
Videos/timelapse
Can be understood as a 3D stack where the third dimension is not spatial but temporal

5. Custom multi-dimensional datasets

FIJI does not interprete your data, just reads it (remember Lecture 1) according to a model yc

6. Virtual stacks

- Virtual stacks are disk resident (as opposed to RAM resident) datasets
- The only way to load image sequences that do not fit in your RAM.

1. Virtual stacks are read-only, so changes made to the pixel data are not saved when you switch to a different slice
2. Commands like Crop [X] may create a RAM issue since any stack generated from commands that do not generate virtual stacks will be RAM resident.

Edit > options >memory \& threads will allow you to change the RAM allocated

Note on non-isometric data (LSM, FIB, ...)

3D Objects counter

Analyze > 3D OC options
Allows to set the Measurements that will be performed

3D Objects counter

Analyze > 3D Objects Counter

Similar to 'Measure particles', but: Threshold can be set

3D Objects counter: Output

Sahtimaes

Check the Look up table

3D Objects counter: Output

[]1 Statistics for A549_PCL200-t0-channel0_Simple Segmentation Stage 2-1.tiff										-				
File Edit Font														
Volume (micron³)	Surface (micron²)	Nb of obj. voxels	Nb of surf. voxels	IntDen	Mean	StdDev	Median	Min	Max	X	Y	Z	Mean dist. to surf. (micron)	S
1408.099	1201.742	17891	3974	4562205	255	0	255	255	255	382.541	60.942	35.786	7.534	2
2118.878	1497.572	26922	6070	6865110	255	0	255	255	255	197.877	89.038	33.429	9.103	3
647.894	585.138	8232	2013	2099160	255	0	255	255	255	155.839	63.630	34.102	5.357	1
643.565	558.641	8177	2092	2085135	255	0	255	255	255	172.481	142.474	33.814	5.120	10.
697.950	649.447	8868	2294	2261340	255	0	255	255	255	151.261	37.186	36.641	5.656	1.
1707.412	1195.269	21694	4806	5531970	255	0	255	255	255	250.222	80.860	36.413	7.609	2
747.534	633.551	9498	2437	2421990	255	0	255	255	255	195.318	34.086	36.335	5.452	1
1255.649	993.930	15954	3658	4068270	255	0	255	255	255	96.251	102.124	37.521	6.826	:2.
682.367	581.667	8670	2050	2210850	255	0	255	255	255	148.327	164.184	36.652	5.336	1.
1001.277	758.804	12722	3025	3244110	255	0	255	255	255	198.978	170.228	37.802	6.027	1
598.783	537.068	7608	1945	1940040	255	0	255	255	255	162.643	195.234	39.588	5.080	1.
644.431	582.112	8188	2171	2087940	255	0	255	255	255	234.675	177.968	41.452	5.394	1

ลฺ
BIO-INSPIRED MATERIALS

3D Objects counter

EXERCISE

Open Example 7 and calculate the volume of the objects using the 3D object counter.

1. Check calibration	Image $>$ Properties... (for 3D spatial and axial settings)
2. Do the analysis	Analysis $>$ 3D object counter
3. Change the settings and repeat	Analysis $>$ 3D OC settings

1. Check calibration

Do the analysis
3. Change the settings and repeat

Image > Properties... (for 3D spatial and axial settings)
Analysis > 3D object counter
Analysis > 3D OC settings

BIO-INSPIRED
MATERIALS

3D suite (plugin)

Help > Update ... >
\checkmark 3D Image Suite
https://sites.imagej.net/Tboudier/
Plugins > 3D suite

Analysis	See next slide
Binary	(Morphological) filters in 3D
Filters	Local Linear filters in 3D
Relationship	Measuring distances (e.g. border to border)
Segmentation	Binary segmentation tools (e.g. 3D watershed)
3D Manager V4 (testing)	
3D Manager V4 Macros	
3D Manager	
3D Manager Options	
Spatial	
Tools	

©
BIO-INSPIRED MATERIALS Unversit ide fribourg
UNIVERSTITT RREEIURGG

3D suite (plugin)

Input

Raw data and binary mask

Output

Intensity stats of each object
Position of centroid of each object (X,Y,Z)
Volume of each object
Surface of each object
Distance stats between center and shell
Caliper distances in 3D and ortho-planes
Sphericity and 3D compactness
Goodness of fit measurements
Ellipsoid: how much is sticking out

Fitting measures to elliposoid
3D convex hull

BIO-INSPIRED

3D suite (plugin)

ROI3D manager
[II RoiManager3D 4.1.0
obj1-val1
obj2-val2
obj3-val3
obj4-val4
obj5-val5
obj6-val6
obj7-val7
obj8-val8
obj9-val9
obj10-val10
obj11-val11
obj12-val12
obj13-val13
obj14-val14
obj15-val15
obj16-val16
obj17-val17
obj18-val18
obj19-val19
obj20-val20
obj21-val21
ahion .anc

1. 3 D segment (use binary Data!!)

you get a new window with your objects in different shades
2. Add an image
this adds the objects

3D suite (plugin)

ROI3D manager

1. 3 D segment (use binary Data!!)
2. Add an image
3. Click "Live ROI: OFF" (makes it "ON")
4. From the list, select obj35-val35
5. Then click "split in two"

C

3D suite (plugin)

EXERCISE

Open Example 7 and calculate the volume of the objects using the 3D manager of 3D suite.
Try to split some objects in the 3D suite
Image > Properties... (for 3D spatial and axial settings)
Analysis > 3D object counter (and 3D OC settings)
Plugins > 3D suite > 3D manager

- Segmentation
- Add image

BIO-INSPIRED
MATERIALS

Natoonacente of competenc
in ReSEARCH

Visualizing 3D data

1. 2 D depictions
2. Renderings
3. Surface rendering
4. Volume rendering

Visualizing 3D data: Depth encoded

AFM as 3D stack

3D stack

Depth coded 3D stack

Image > Hyperstacks > temporal color-coded

Visualizing 3D data: Orthogonal views and depth coding

EXERCISE

Open Example 3.

Depth-encoded Color
Image > Hyperstacks > Temporal color-code / choose a LUT (e.g. Grays)

Orthogonal views

Image > stack > orthogonal views

Visualizing 3D data: Orthogonal views

Orthogonal views

The intersection point of the three views follows the location of the mouse click and can be controlled by clicking and dragging in either the XY, XZ or YZ view.
$X Y$ and $X Z$ coordinates are displayed in the title of the projection panels. The mouse wheel changes the screen plane in all three views.

How to get rid of the marker lines?
Image > Overlay > hide overlay (or remove overlay)

๓

BIO-INSPIRED MATERIALS

3D rendering

Note: renderings require interpretation by the user. Hence, they are the convolution of the raw scientific data and the feature the user would like to see.

1. Surface rendering

= binary threshold-based
2. Volume rendering
= percentage threshold-based

Never publish only renderings.
Always provide the raw data (i.e. orthogonal views)

BIO-INSPIRED
MATERIALS

Nationa center of compreten
IN RESARCH

Surface rendering: Isosurfaces

Isosurface

A three-dimensional analogue of an isoline. It is a surface
that represents points of a constant value within a volume.

Step 1: Creating an isoline by thresholding Step 2: voxels to mesh by marching cubes
Step 3: Mesh to rendering through shaders

Isosurfaces: Step 1: Thresholding the voxels

Binary

Threshold = 83

Edge only = isoline

A threshold is calculated

- Pixel value > threshold, the voxel is considered to contain the signal (=object).
- Pixel value < threshold, the voxel is considered not to contain the signal (=background).
- This classification system is binary; it defines each voxel as containing either 100% or 0\% of the signal
- Once classified, a surface is defined as the boundary between the pixels (=isoline)

Isosurfaces: Step 2: Isoline/Voxel to mesh conversion

Isosurfaces: Step 2: Voxel to mesh conversion

Marching squares

Edge index Vertex inde

Marching cubes

Intensities -> Binary -> 64 predefined values / marching cubes

Isosurfaces: Step 3: Reflection and intensity

Isosurfaces: Step 3: Illumination

No shader

Gouraud shading

Bilinear interpolation of the intensities (color) between two normals

Phong shading
Barycentric interpolation of the normals themself

Isosurface: towards ray tracing

(1)
Sphere equation: $(\vec{p}-\vec{c}) \cdot(\vec{p}-\vec{c})=r^{2} \quad$ Intersection:
Ray equation: $\vec{r}(t)=\vec{\sigma}+t \vec{d}$

$t^{2}(\vec{d} \cdot \vec{d})+2(\vec{o}-\vec{c}) t \vec{d}+(\vec{o}-\vec{c}) \cdot(\vec{o}-\vec{c})-r^{2}=0$

4 Illuminiation Equation (Blinn-Phong) with recursive Transmitted and Reflected Intensity:
$I=k_{a} I_{a}+I_{i}\left(k_{d}(\vec{L} \cdot \vec{N})+k_{s}(\vec{V} \cdot \vec{R})^{n}\right)+\underbrace{k_{t} I_{t}+k_{r} I_{r}}_{\text {recursion }}$

Snell's law: $\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{v_{1}}{v_{2}}=\frac{n_{2}}{n_{1}}$
$n_{\text {air }} \sin \theta_{i}=n_{\text {glass }} \sin \theta_{t}$
refraction coefficients:
$n_{\text {air }}=1, n_{\text {glass }}=1.5$
(4) Area Light Simulation: $I_{\text {light }} \frac{\# \text { (visible shadow rays) }}{\# \text { (all shadow rays) }}$

The more bounces, the more realistic the image becomes

๓
BIO-INSPIRED MATERIALS nationac center of compreten
IN RSSEACH

Isosurface: Example

ImageJ 3D viewer

Isosurface and (very basic) volume renderer Good quality, but limited
Buggy (in my view)

But:
exportas STL, wavefront $\square 3$ printer

Commercial renderer

Avizo/Amira/Imaris
Very flexible, commercial software
Good quality, extensive renderer

Available through ScilT
(BioNano workstation)

Open source ray-tracer

Blender 2.82 cycles renderer Realistic rendering possible Slow

Free to download

Isosurface: Ray-tracing and GANs

Isosurface: surface rendering

EXERCISE

Open Example 2 and try out the 3D viewer.

1. Plugins > 3D viewer
2. Select Display as surface, color (your choice) and resampling factor of 1)
3. Change the threshold (Edit > Adjust threshold). Set it to 50

Isosurfaces: example

Advantages:

- Computationally fast
- Good 3D interpretation

Disadvantages:

- Noise effects only one signal (e.g. LSM channel, segmented/thresholded)
- Hence: not suitable for noisy data (e.g. electron tomography)
- Preferably: thresholded/segmented (binary) data

Main disadvantage: A decision for every voxel must be made.
This can produce:

- false positives (spurious surfaces)
- false negatives (erroneous holes in surfaces)

3D rendering

Never publish only renderings.
 Always provide the raw data.

Note: renderings require interpretation by the user. Hence, they are the convolution of the raw scientific data and the feature the user would like to see.

1. Surface rendering
= binary threshold-based
2. Volume rendering
= percentage threshold-based

Direct volume rendering methods generate images of a 3D volumetric data set without explicitly extracting geometric surfaces from the data (Levoy 1988).

Volume rendering offers the possibility for displaying weak or fuzzy surfaces. This frees one from the requirement to make a decision whether a surface is present or not.

Every voxel should contribute to the image

How does it work?

1. VOLUME RAY-CASTING (or ray marching): Cast imaginary rays through the entire 3D stack
2. DEFINE TRANSFER FUNCTION: setup rules for color and alpha (opacity)
3. DEFINE EDGES AND LIGHT SOURCE: shading
4. ACCUMULATE THE DATA

BIO-INSPIRED MATERIALS

Volume rendering: 1. Ray casting \& interpolation

For each pixel of the final image, a ray of sight is shot ("cast") through the volume. At non-orthogonal angles, interpolation is needed

Ray casting

Unvivasiti de fribura
UNiversitit friliung

Volume rendering: Example - Maximum intensity projection

projects in the visualization plane the voxels with maximum intensity that fall in the way of parallel rays traced from the viewpoint to the plane of projection

For each sampling point: RGBA is computed (Red, Green, Blue and Alpha)

ஹ
BIO-INSPIRED
MATERIALS
IN RESEARCH

Volume rendering: step 2: Sampling and interpolation

For each pixel of the final image, a ray of sight is shot ("cast") through the volume. At non-orthogonal angles, interpolation is needed

Ray casting

Volume rendering: step 2: Sampling and interpolation

Nearest Neighbour

= unweighted
\rightarrow Take the value of the closest voxel

1D NN: closest of two points

2D NN: closest pixel offour corners of a square

Linear

= Center of mass
\rightarrow Take the linear average of the two pixels the ray is intersecting

1D Linear: Center of mass of two points

Bilinear: Center of mass of square corners Trilinear: Center of mass of cube lattice points

Cubic

\rightarrow Center of mass
= Lagrange polynomials, cubic splines or cubic convolution

1D Cubic: Center of mass of $3^{\text {th }}$ degree polynomial

Bicubic: Center of mass of 16 pixels Tricubic: Center of mass of 64 pixels

Volume rendering: Example - Maximum intensity projection
projects in the visualization plane the voxels with maximum intensity that fall in the way of parallel rays traced from the viewpoint to the plane of projection

Image > Stack > 3D Project...

Original stack

Maximum intensity (brightest point)

Advantages

computationally fast

Disadvantages

May not provide a good sense of depth of the original data.
Two MIP renderings from opposite viewpoints are symmetrical images
No difference between left or right, front or back.

Volume rendering: step 3: shading

Shading

For each sampling point, a gradient of illumination values is computed. These represent the orientation of local surfaces within the volume. The samples are then shaded (i.e. coloured and lit) according to their surface orientation (normal) and the location of the light source in the scene.

Each sampling point is shaded according to its normal

Volume rendering: step 4: compositing

Compositing

After all sampling points have been shaded, they are composited along the ray of sight, resulting in the final colour value for the pixel that is currently being processed.

$$
\begin{aligned}
& \qquad L_{\mathrm{o}}\left(\mathbf{x}, \omega_{\mathrm{o}}, \lambda, t\right)=L_{e}\left(\mathbf{x}, \omega_{\mathrm{o}}, \lambda, t\right)+\int_{\Omega} f_{r}\left(\mathbf{x}, \omega_{\mathrm{i}}, \omega_{\mathrm{o}}, \lambda, t\right) L_{\mathrm{i}}\left(\mathbf{x}, \omega_{\mathrm{i}}, \lambda, t\right)\left(\omega_{\mathrm{i}} \cdot \mathbf{n}\right) \mathrm{d} \omega_{\mathrm{i}} \\
& \begin{array}{l}
\text { The tidirectional } \\
\text { x= position } \\
\omega_{0}=\text { direction (angle) }
\end{array} \\
& \begin{array}{l}
\text { Theflectance distribution } \\
\text { function }
\end{array} \\
& \text { The spectral radiance spectral }
\end{aligned}
$$

$\lambda=$ wavelength
$\mathrm{T}=$ time point
อ่
BIO-INSPIRED
MATERIALS
Mnamicuractuwneme

Volume rendering: Maximum intensity projection

EXERCISE

Open Example 2 and try out the Volume viewer (plugins > volume viewer)

Volume rendering: Projection

EXERCISE

Open Example 2 and try out the Volume viewer (plugins > volume viewer)

Projection

Alpha without transfer function adjustments

Projection

Alpha with 1D transfer function adjustments

Transfer Function (TF): Color \& Alpha Grayscale (1) Draw LUT RGB $\odot \mathrm{R} \bigcirc \mathrm{G} \bigcirc \mathrm{B} \bigcirc$

Draw the alpha graph of the 1D-TF(lum)

Volume rendering: Projection

EXERCISE

Open Example 2 and try out the Volume viewer (plugins > volume viewer)
Mode: Projection (3) \quad Interpolation: Trilinear (1)
∇ z-Aspect: $\sqrt{1.0}$ Sampling: $\sqrt{1.0} \square$ Background

Projection

Alpha with 2D transfer function adjustments

Volume rendering: Volume

EXERCISE

Open Example 2 and try out the Volume viewer (plugins > volume viewer)

Slice (0)
Slice \& Borders (1)
Max Projection (2)
Projection (3)
Projection
Threshold and set compositing effects

$\because \cdot 1$
BIO-INSPIRED MATERIALS

Volume rendering

EXERCISE

Open Example 2

1. Plugins >3 Diewer
2. Select Display as volume, color (your choice) and resampling factor of 1)
3. No need to set a threshold

Imaris

Volume rendering: Imaris

BioNano has a workstation dedicated to Image rendering (amipc22.unifr.ch)
Soft Matter physics has also a workstation
More number cruncher available at Biology, Medicine, (physics?)

Imaris: dedicated to 3D LSM data

Volume rendering: Aviso

BioNano has a workstation dedicated to Image rendering (amipc22.unifr.ch)

Aviso: dedicated to 3D non-fluorescent 3D and 4D data

Z-Stacks

\checkmark Congratulations,

 You finished Part IV, 3D

