


Thermo Fisher SCIENTIFIC

Scios (S)TEM sample prep

Module 7

#### Large sample holder and stage, Easy Navigation



- Multiple positions accommodate plenty of samples
- Pre-tilted sample positions for Bulk
   Samples
- Large Stage movement;
   110mm x 110mm X,Y, 90° tilt
- Vertical, Horizontal and Pre-tilted TEM grid holder positions
- Easy and Fast sample Location with Nav-Cam
- Bulk samples and pre-tilted TEM grids can be loaded simultaneously.
   Allowing S(TEM) sample preparation and STEM end pointing and imaging without breaking the vacuum

#### Step by step (S)TEM sample preparation

- Find area of interest
- 2. Set coincidence point using e-beam + Z-adjustment

(start with: zero beam shift and uncheck Z-Y link)

If needed start with e-beam deposition in quad 1:

tilt back to zero; draw rectangle over area of interest.

Choose Pt dep E str, change DT to 15us, change OL 75% (advance tab)

set time to 300sec. E-beam 2kV ≥ 1.6nA ->Start

**NOTE: Retract GIS** 

- 3. Tilt to 52 and continue with ion beam Pt deposition in quad 2. Overlay rectangle on E-beam dep. (increase X) Min. thickness of Pt layer=1.5um.
- 4. Rough cut/bulk milling using Regular Cross Section + Si multipass new application file; RCS size of pattern: X slightly wider as Pt layer Set Z to required depth, Y=2Z. Choose a ion beam current according to size and material. Put pattern not too close to the Pt layer (for high BC Δ>2um) start to mill front side first.
- 5. Than repeat from back side; rotate pattern 180deg (advanced tab)(or change milling direction to top to bottom) NOTE: end point (where patterning stops) is always the Pt layer
- 6. Cleaning step: reduce ion beam current 2 steps.

According to beam current apply an extra tilt +/- using cleaning cross section (Si application):

 $Z = \frac{1}{2}$  depth of bulk milled depth. Apply to front and back side. Thickness of lamella 1-1.5um

#### Step by step (S)TEM sample preparation

- 7. Cut-out: Tilt to 7 degrees. Create cut-out; place a rectangle at the bottom (3/4 from top). Width of bottom cut min. 1um. Draw a rectangle at the EasyLift side (left side); to be cut completely. Place 3<sup>rd</sup> rectangle at right side and leave a part of the lamella attached to the bulk. Choose parallel milling (right top patterning page) z=2um, ≥1nA BC. RTM (or unpause ion beam) while patterning. Snapshot using e-beam for monitoring.
- 8. Tilt back to zero.

  NOTE: at this stage the FIB image can be scan rotated 180°

Lower ion BC to 50pA and go to EasyLift (=EL) tab

SEM image: EL correction X + Y

FIB image: EL correction X + Z

- 10. Insert EL needle to "park position"; EL visible in SEM image and at lower mag. in FIB image. Insert EL further down by using Z in FIB image.

  Insert Pt-GIS when EL is close to the lamella (few um)
- 11. Lower EL -> Z further until gentile touch down (left hand side of lamella) and retract EL 1 step
- 12. Weld the EL to the lamella using Pt-dep. Wait for the vacuum to recover and cut free lamella at other (right hand) side, by increasing ion BC to 1nA (fast).

  NOTE: before starting patterning make i-beam snapshot (or F9)
- 13. Lower i-beam current to 50pA (Check In SEM image if lamella is free by tilting to 35°)
- 14. Move out Easy Lift until lamella is removed from bulk. Bring EL to park position, than fully retract. Than retract the GIS from UI.

# TEM prep using vertical TEM grids Rowbar + grids loaded in position R1 or R4

#### Step by step (S)TEM sample preparation

- 15. Place halfmoon TEM (R1 or R4) grid under beam. Focus on grid link Z to WD set Z to 7mm. xT align grid horizontally. Set beam coincidence point.
- 16. Modify TEM grid to lamella width @ 0° tilt and by using high BC and CCS (X >2um smaller as lamella width, Y =18um, Z =2um)
- 17. Lower ion BC to 50pA and unpause image. Insert EL to park position. Insert EL further by using Z ↓in FIB image. Insert Pt-GIS when EL is close to TEM grid. Lower EL -> Z further until (almost) touch down.
- 18. Weld lamella to grid using Pt-dep. Wait for the vacuum to recover and cut free EL from lamella by increasing ion BC to 1nA (fast).
- 19. Move out Easy Lift a few ums. Bring EL to park position than fully retract And last step retract GIS from UI.
- 20. For extra stability, the lamella can be attached by an extra Pt dep from the other side.
- 21. Or use the Cu redep method. Tilt to 52° and use 1nA + CCS; 4x3x1um. At right hand side rot pattern 90° start milling close to lamella, repeat at left hand side rot pattern 270°.
- 22. Lamella is now ready for further thinning.

#### Final thinning example

- 1 step: CCS @ 1nA, +/- 2° tilt
   CCS @ 54° bottom to top and CCS @ 50° bottom to top (or rotate pattern 180°)
- <u>2 step:</u> CCS 300pA +/- 1.5° tilt (thickness about 300nm)
- 3 step: CCS 100pA +/- 1.2° tilt

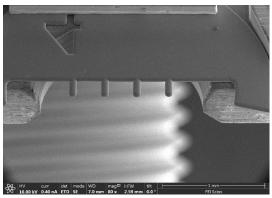
For e-beam end-pointing use < 5kV

- finish with back-side milling; mill until uniform contrast
- use Pt layer as reference. Final thickness about 100nm.
- final step:
- Low kV clean is always needed for crystalline material: milling @ 30kV: amorphous layer (in Si) = 23nm
  - 5kV+48pA, +/- 5°; using rectangle Z=100nm (1min)

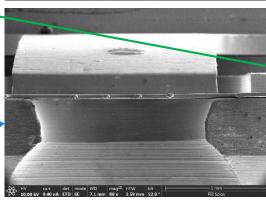
@ 5kV: ~6nm

- 2kV+27pA, +/- 7°; using rectangle Z=30nm (fast)

@ 2kV: ~2nm


NOTE: Use live e-beam image for end-pointing

For stability, reduce width (X) by every cleaning step: e.g. start 15 -> 13 -> 11 um

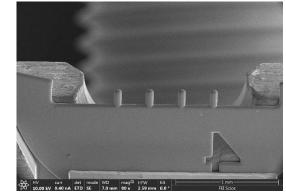

# TEM prep using 38° pre-tilted TEM grids Rowbar + grids loaded in position R3

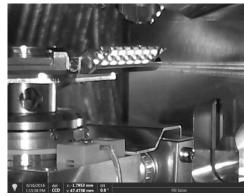
#### Step by step (S)TEM sample preparation continued

- 15. Place halfmoon TEM grid (R3) under SEM beam.
  Focus on grid link Z to WD set Z to 7mm.
  xT align grid to horizontally.
  Set beam coincidence point.
  NOTE: If needed rotate stage 180° (Compucentric) so the large part of the holder will be tilting downwards
- 16. Modify TEM grid to lamella width @ 0° tilt and by using high BC and CCS (X >2um smaller as lamella width, Y =18um, Z =2um)
- 17. Tilt stage to 52°
- 18. Lower ion BC to 50pA, lower magnification and unpause image. Insert EL to park position. Insert EL further by using Z ↓in FIB image. Insert Pt-GIS when EL is close to TEM grid. Lower EL -> Z further until (almost) touch down.
- 19. Weld lamella to grid using Pt-dep. Wait for the vacuum to recover and cut free EL from lamella by increasing ion BC to 1nA (fast).








#### Step by step (S)TEM sample preparation continued

- 20. To increase the mounting stability of the thick lamella to the grid, some extra PT EBID can be applied; tilt stage further to 65deg. Use e-beam to deposit extra Pt (2kV, >>1nA) to attach lamella to grid.
- 21. Retract Pt GIS and tilt back to 0°
- 22. Rotate stage to milling position = 180° (Computentric)

  NOTE: when a higher sample is loaded, lower stage first !!
- 23. Or use the Cu redep method. Use 1nA + CCS; 4x3x1um. At right hand side rot pattern 90° start milling close to lamella, repeat at left hand side rot pattern 270°.





23. Lamella is ready for further thinning.

NOTE: FIB is now looking perpendicular to the grid+lamella

#### Final thinning example

- 1 step: CCS @ 1nA, +/- 2° tilt
   CCS @ 54° bottom to top and CCS @ 50° bottom to top (or rotate pattern 180°)
- <u>2 step:</u> CCS 300pA +/- 1.5° tilt (thickness about 300nm)
- 3 step: CCS 100pA +/- 1.2° tilt

For e-beam end-pointing use < 5kV

- finish with back-side milling; mill until uniform contrast
- use Pt layer as reference. Final thickness about 100nm.
- final step:
- Low kV clean is always needed for crystalline material: milling @ 30kV: amorphous layer (in Si) = 23nm
  - 5kV+48pA, +/- 5°; using rectangle Z=100nm (1min)

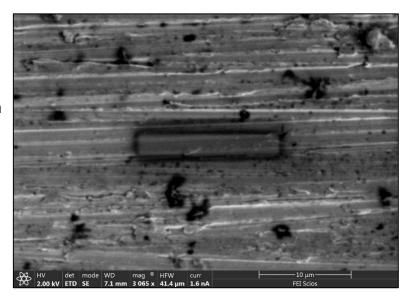
@ 5kV: ~6nm

- 2kV+27pA, +/- 7°; using rectangle Z=30nm (fast)

@ 2kV: ~2nm

NOTE: Use live e-beam image for end-pointing

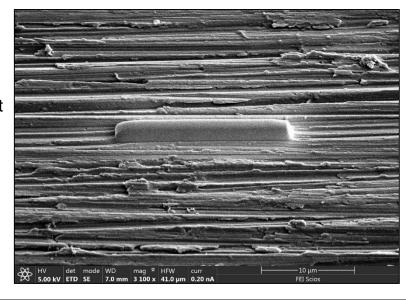
For stability, reduce width (X) by every cleaning step: e.g. start 15 -> 13 -> 11 um

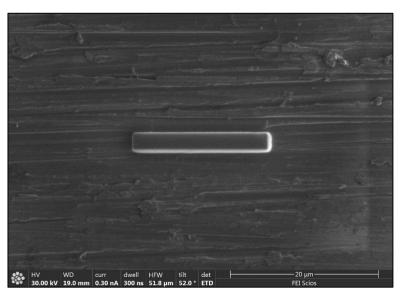

#### Tilt correction is function of BC and material

| I-beam<br>current | tilt Si | tilt GaAs | tilt Fe | polymers |
|-------------------|---------|-----------|---------|----------|
| 50pA              | 1       |           |         | 0.3      |
| 100pA             | 1.2     | 0.8       | 2       | 0.5      |
| 300pA             | 1.6     | 1.2       | 2.5     | 0.8      |
| 500pA             | 1.8     |           | 2.8     | 1        |
| 1nA               | 2       | 1.8       | 3.5     | 1.2      |
| 3nA               | 3       |           | 4       |          |

This table is in <u>indication</u> of the correction angles (extra tilt angles) that need to be applied during the final milling steps:
When the sample is thinning too fast at the bottom, the extra tilt angle is too high When the Pt is disappearing, the extra tilt angle is too low.

#### Protective layers of Platinum


e-beam induced (ebid) Pt deposition

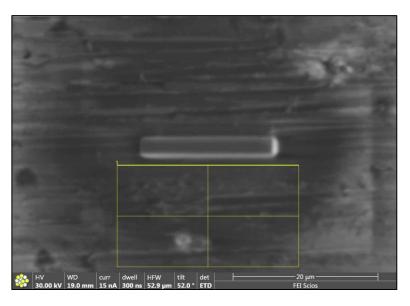


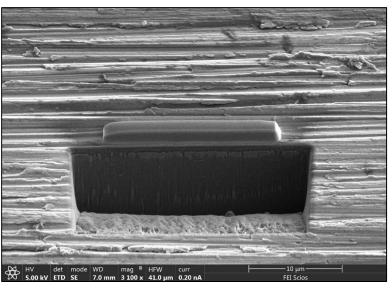



i-beam induced (ibid)
Pt deposition;
pattern placement over ebid-Pt

ibid-Pt deposition On top of ebid-Pt

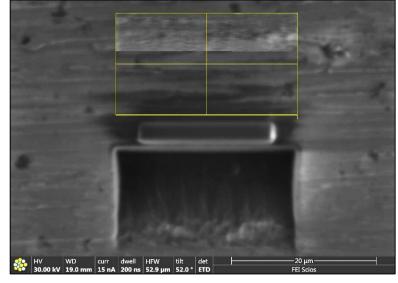


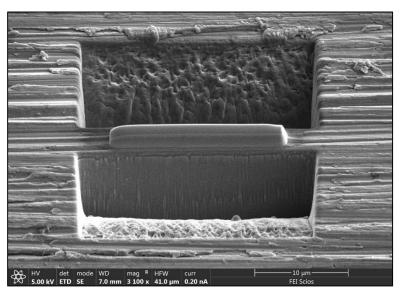




ibid-Pt deposition on top of ebid-Pt



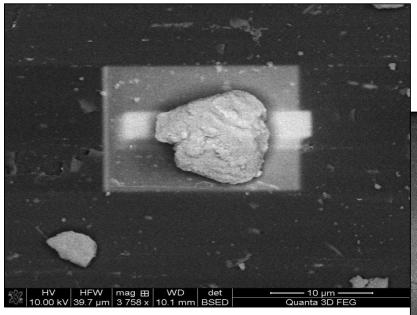
# Regular Cross Sectioning/bulk milling; Si-multipass new

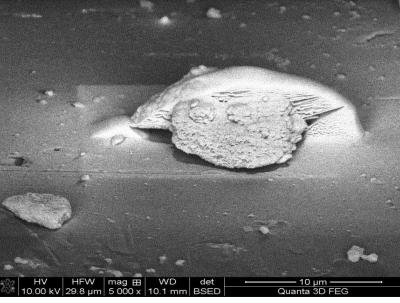

RCS pattern placed at front side (BC=15nA)

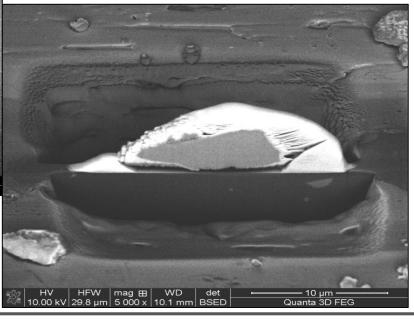




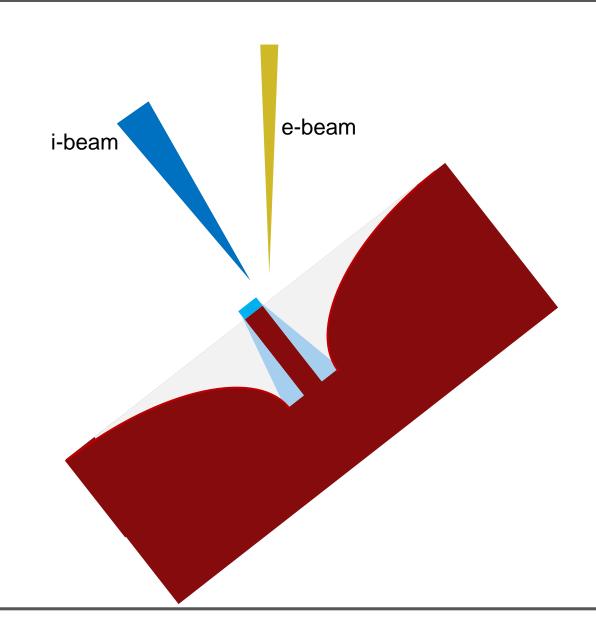

RCS front side finished


RCS pattern placed at back side; pattern rotated



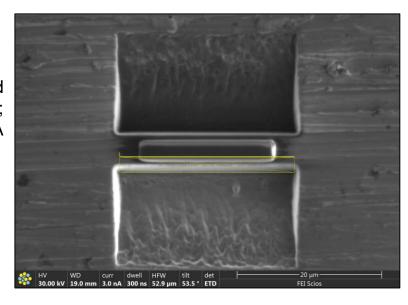

RCS back side finished

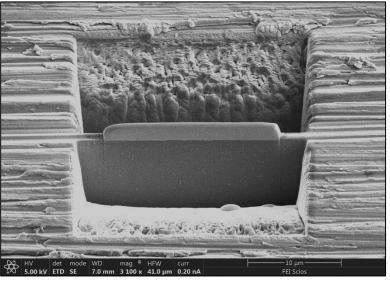

# Site specific; e.g. powder sample





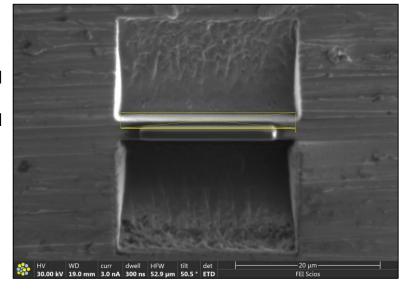


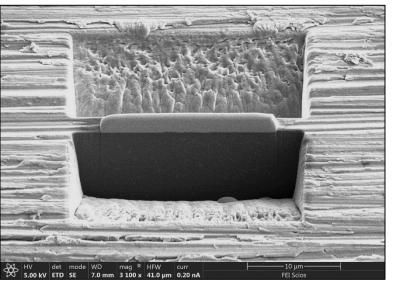

#### RCS: Si-multipass new (both sides)




Side view @ 52°tilt; after removing material at both sides of the Pt layer using **Si-multipass new** with high i-beam current

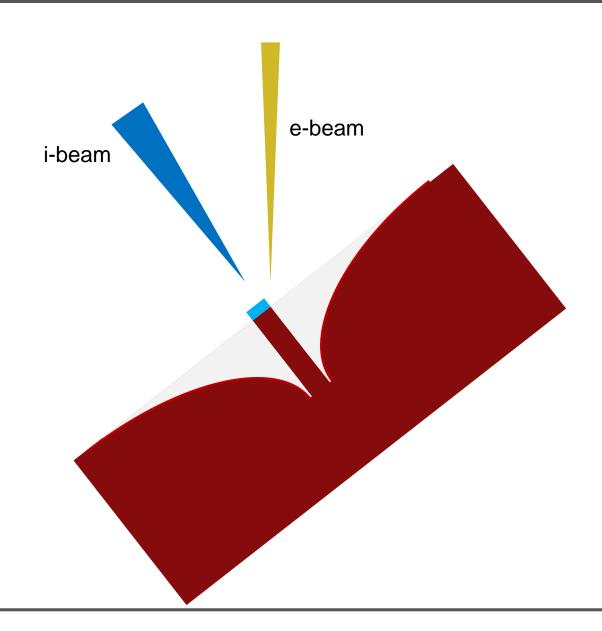
# Cleaning Cross Sectioning; Si-application file


CCS pattern placed at front side (+ extra tilt); BC=3nA



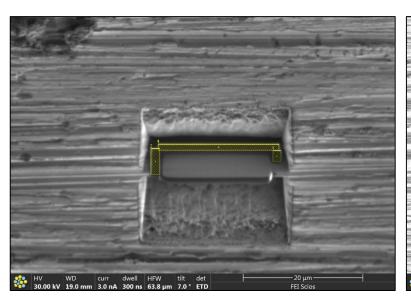


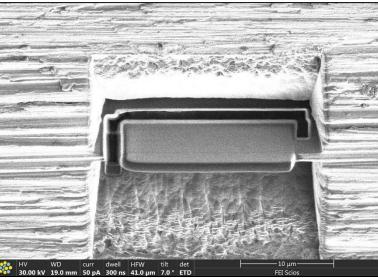

CCS front side finished


CCS pattern placed at back side (- extra tilt); pattern rotated



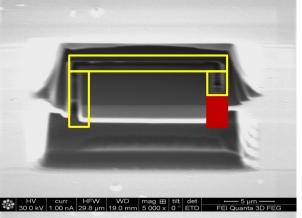



CCS back side finished

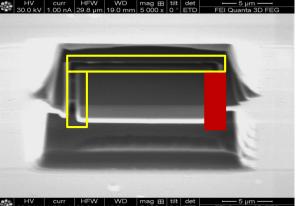

# Cleaning Cross Section (both sides)



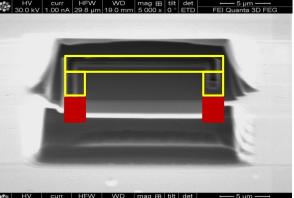
Side view @ 52°tilt; after removing material at both sides of the Pt layer using **CCS** + Si application file with medium i-beam current


#### Cutting free lamella






FIB images @ 7° tilt; before and after milling

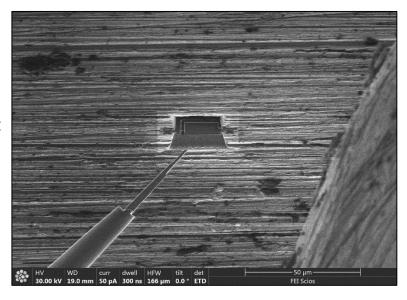

- -normal rectangles: 1-2-3 parallel milling (to prevent redepo)
- -width about 1um
- -right-hand-side still attached
- -placement of bottom rectangle not too deep (= at 2/3)

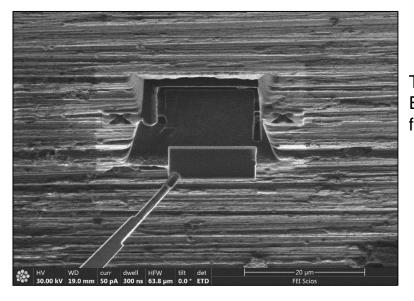


Normal sample size: Red is still attached



Small lamella

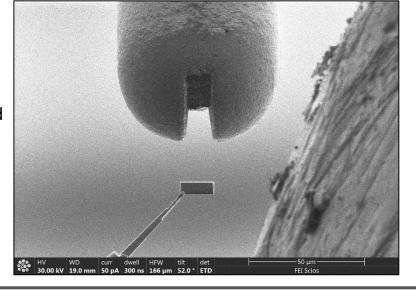


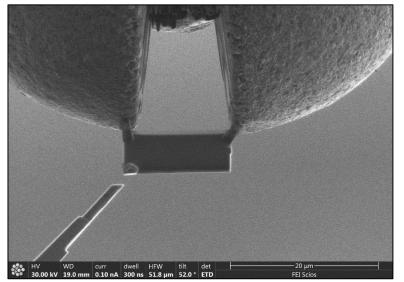


Stress in sample



#### In-situ thick lift out using EasyLift

EasyLift + Pt GIS inserted; sample @ 0° tilt

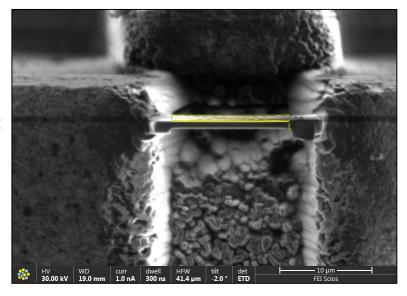



Thick lamella attached to EasyLift, cut free and removed from bulk

EasyLift + lamella approaching modified TEM grid



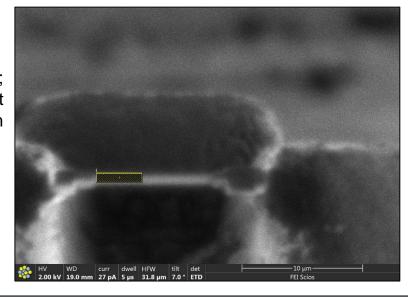


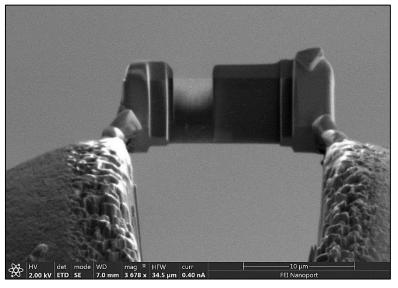



Lamella attached to TEM grid and EasyLift needle is cut off. After removing the EL, the lamella is ready for the final thinning step.

# Thick lamella during thinning

CCS; milling back side (after front side) 1nA, -2° tilt

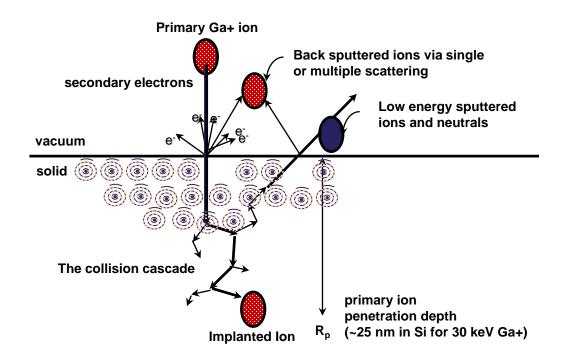




#W WD curr dwell HFW tilt det 10 μm−

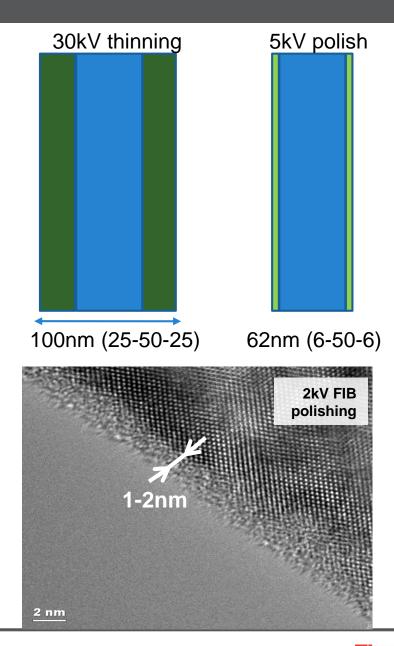
| 5.00 kV 19.0 mm 48 pA 1 μs 31.8 μm -5.0 ° ETD FEI Scios

5kV (48pA) cleaning; Image; back side; -5° tilt Milling rectangle Z=100nm

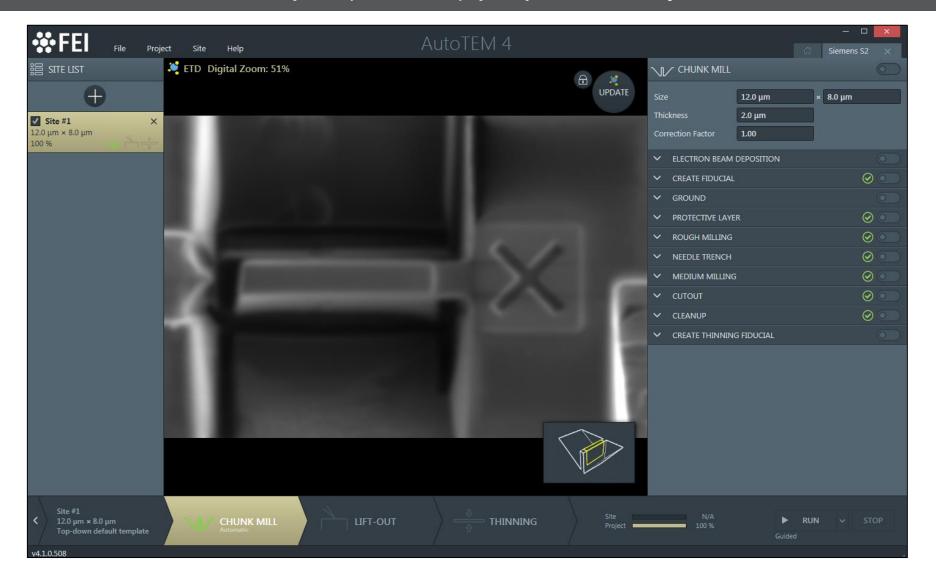
2kV (27pA) cleaning; Image; front side; +7° tilt Milling rectangle Z=20nm





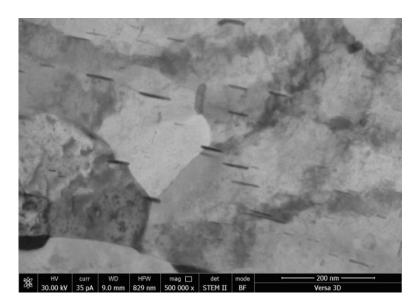


Sample ready for TEM



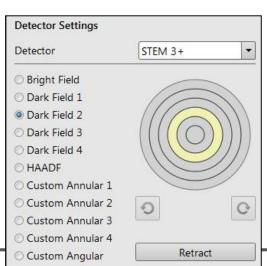

#### **Ion-Solid Interactions**



For good quality TEM lamellae the amorphous layers need to be minimized.




#### Automated thick lift-out sample (=chunk) preparation by: autoTEM4




#### Imaging of sample using the STEM 3+ detector

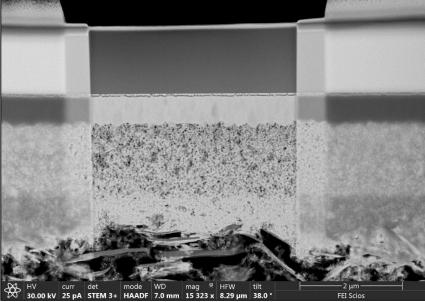
- High resolution imaging and high resolution EDS analysis
- 14-segment STEM detector for transmission imaging in bright field, dark field and high-angle (annular) dark field.

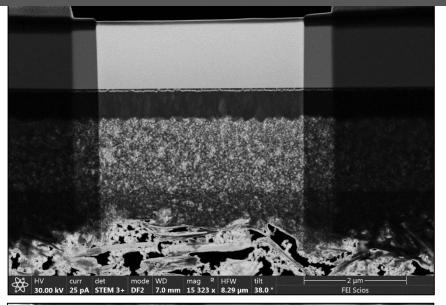


Bright field (BF) STEM image of Aluminum showing precipitates of 2nm width






No TEM grid manipulation; the samples are made and imaged without manipulating sample or breaking the vacuum


Selection of active segments in the UI.

#### (S)TEM prepared sample imaged with the STEM 3+ detector

STEM 3+ images; BF, DF2, HAADF. Simultaneously acquired + CCD image showing sample holder (tilted to horizontal) + inserted STEM 3+ detector











#### Milling in beam sensitive/soft material;

- Lower BC (500pA and below) -> less melting -> more efficient milling
- Lower ion dose; use InP or PMMA application file
- Use neg. OL -150% and faster DT
- Don't use e-beam while patterning
- Sputter coat sample
- Total process will take longer; use autoTEM4 to prepare a chunk

#### NOTE: Temperature increase during milling;

conductive material a few degrees (<10K), non-conductive material (low thermal conductivity) high temp increase (SiO2  $\pm$  230K)