

ThermoFisher SCIENTIFIC

Scios
 Cross Sectioning

Module 2

- DualBeam system unique functions
-Slice with FIB and view with SEM (simultaneously=SPI)
- In-situ cross sectioning, etching \& coating
-metal deposition for protection
-Electron beam metal deposition for protection
-Electron beam for charge neutralization
-Thin TEM sample preparation (<100nm)
with low kV cleaning
-Site specific micro analysis

What is a Cross section?

-FIB removes small amount of material leaving a perpendicular wall for imaging (with e-beam or i-beam)
-SEM takes image of revealed structures below the surface to image/measure the previously buried feature
$52^{\circ} \mathrm{tilt}$

- Eucentric height is the coincident point of both beams and the tilt axis of the stage.
- It is the 'magic' distance from the pole piece to the sample surface.
- It is where typically all the dual beam work is done.

Optimized e- and i- Beam
 Working distance

FIB Cross-sectioning Part 1

- Find area of interest
- Set coincidence point
- Deposition of a metal layer
- Bulk Mill (Regular Cross Section)
- Removes material in front of feature for viewing
- Intermediate Mill (Cleaning Cross Section)
- Make face more perpendicular in a fast way
- Cleaning Mill Cleaning Cross Section)
- Finely removes material to reveal feature
- Imaging (e-beam and i-beam, EDS analysis)
- Set i-beam current to 100pA (30kV)
- Set e-beam current to 400pA (10keV)
- Use e-beam to find a feature or area of interest
- Rotate stage to align horizontal axis of feature with tilt axis
- "Align feature" are aids to rotate the sample into position
- Set coincidence point (assumed after this)

Why deposit (Pt, W or C) layer:

-For protection of area of interest
-e-beam induced deposition (when top surface of sample is important) before
-i-beam induced deposition
-Planarization of sample surface
-As a reference point
-Draw Regular Cross Section pattern
-Align top edge ~ 1-2 $\mu \mathrm{m}$ from front of Pt layer
-For X: Allow 3-4 microns on each side
-For Z : The desired depth of the deepest part
-For Y: 2 times the depth (Z)

- Set beam current 15-65 nA
-Use "Si multipass (new)" application
- Start milling

Pt deposition

Pt deposition:
E-beam view @ 52° tilt

Side view after removing material using Si-multipass new @ 52° tilt with high i-beam current

- Select $1 / 4-1 / 2$ the beam current of rough mill
- Tilt the sample $+2^{\circ} \quad$ (extra tilt depends on BC and material)
- Remove previous pattern
- Draw Box pattern or Cleaning Cross Section (Si application file)
- Adjust front close to Pt layer ($0.25 \mu \mathrm{~m}$)
- Adjust back to just overlap with just milled area
- Set X to be about $1 \mu \mathrm{~m}$ smaller than previous mill
- Set Z to about $1 / 4$ to $1 / 2$ of desired depth
- Ready, mill!
- Select 50-300 pA
-Draw Cleaning Cross-Section (Si appl file) -Adjust leading edge to go through feature -Adjust trailing edge just beyond previous mill -Set X to be about $1 \mu \mathrm{~m}$ smaller than previous mill
-Set Z to about $1 / 4$ to $1 / 2$ of desired depth
- Start milling
- Grab frames periodically to check progress or use SPI

Side view after cleaning side wall using Cleaning Cross Section
@ 52° tilt with medium high
(and low) i-beam current
-SEM; using OptiTilt in combination with T1 + T2

- FIB; using standard mode + ETD or ICE
- Set beam current to 10-50pA
- Tilt stage to 0°; (compucentric) rotate 180° (+ scan rotate image 180°)
- If needed focus + stigmate (outside area of interest)
- Use beam shift and mag. to frame picture perfectly
- Use a slow single scan ~ 40 s to generate a nice photo

Imaging Cross section

1. Find area of interest, link Z to WD, move sample to euc. Height.
2. Set beam coincidence point by using e-beam $+Z$ (height)-adjustment (start with: zero beam shift and uncheck Z-Y link (compu tilt)

- If needed start with e-beam deposition in quad 1:
tilt back to zero; draw rectangle over area of interest.
Choose Pt dep E str(uctures), change DT to 15us, change OL 75\% (advance tab)
set time to 300 sec. E-beam $2 k V$ >> 1nA ->Start
- Retract GIS

3. Tilt to 52 and continue with ion beam Pt deposition in quad 2.

Draw rectangle over E-beam dep. (increase X); $Z=1$ um. Calculate the correct beam current, insert Pt GIS press F9.
Place pattern over E-beam dep. When finished retract Pt GIS
4. Rough cut/bulk milling using Regular Cross Section + Si-multipass application file;

RCS size of pattern: X slightly wider as Pt layer
Set Z to required depth, $Y=2 Z$. Choose a ion beam current according to pattern size and material. Leave space between end of pattern and the Pt layer (for high BC $\Delta>2 u m$) start to mill front side.
5. Cleaning step: reduce ion beam current 2 steps. Apply an extra tilt according to beam current + use cleaning cross section (+Si application); $Z=1 / 2-1 / 4$ depth of bulk milled depth.
NOTE: instead of CCS; 5 boxes, $Y=500 \mathrm{~nm}+\mathrm{Z}=8 \mathrm{um}$ (total milling time 3-5min.)
6. If needed repeat step 5 with a reduced BC.
7. Image cross section

Preparing cross section; step by step

Step 1-4

Step 5+6

Preparing cross section; step by step

Step 1-4

Step 5+6

FIB Cross-sectioning Part 2

- For a clear x-ray signal that is only derived from the crosssection face
- The back of a typical crosssection will reflect rays
- These rays obscure the real signal
- 2 ways to prepare

- So make a big box, also deeper than before
- X-ray signal just from cross-section
- Typical size would be $20 \mu \mathrm{~m}$ by 20 $\mu \mathrm{m}$ by $20 \mu \mathrm{~m}$
- Use largest beam current available for bulk mill

- Deposit a Pt-square
- Make a cross-section pattern bigger than face to expose
-Make anti-shadow cross section at right hand side
- Use a large current to reduce milling time

Preparing for EDS analysis

- To prevent shadowing: blocking the X-rays on their way to the detector
- Material at the right hand side of the cross section needs to be removed

- To prevent shadowing:
blocking the X -rays on their way to the detector
- Material at the right hand side of the cross section needs to be removed

FIB

1. Find area of interest
2. Set coincidence point using e-beam + Z-adjustment (start with: zero beam shift and uncheck compu tilt)

- If needed start with e-beam deposition in quad 1:
tilt back to zero; draw rectangle over area of interest.
Choose Pt dep E str, change DT to 15us, change OL 75\% (advance tab)
set time to 300 sec . E-beam 2 kV >> $1 \mathrm{nA}->$ Start
- Retract GIS

3. Tilt to 52 and continue with ion beam Pt deposition in quad 2.

Overlay rectangle on E-beam dep. (increase X); $Z=1$ um. Calculate the correct beam current
4. Rough cut/bulk milling using Regular Cross Section + Si multipass new application file;

RCS size of pattern: $X=10-15$ um wider as Pt layer at right hand side
Set Z to required depth, $Y=2 Z$. Choose a ion beam current according to size and material. Put pattern not too close to the Pt layer (for high BC $\Delta>2 u m$) start to mill front side.
5. Mill rectangle at right hand side of Pt layer
6. Cleaning step: reduce ion beam current 2 steps.

According to beam current apply an extra tilt + using cleaning cross section (Si application): $Z=1 / 2$ depth of bulk milled depth.
7. If needed repeat step 6 with a reduced $B C$.

- Good for showing row and column structures
- Can see horizontal and vertical structure in one image

- Direct observation for thickness measurements without tilt correction
- Yet allows milling so can find exact location
- Excellent signal to detector since feature not in a hole

90° viewing

45° viewing

- Scribe or cleave sample close to feature
- Mount sample on pre-tilted holder

1. Scribe or cleave sample close to feature
2. Mount sample pre-tilted 45°
3. Rotate sample edge parallel to tilt axis (down toward user)
4. Set feature to eucentric height
5. Milling at 0 deg stage tilt
6. Stage tilt 45° for plan view
7. Navigate to feature

FIB Cross-sectioning Part 3

Avoiding Curtains

- Caused by:

- Surface topography
- Sputter rate differences: fast next to slow
- Pores
- Crystallographic orientation
- Solutions:
- Planarize with metal deposition
- Use correct beam current
- Angled cut

Evens out the surface topography

1. Make fiducial marks
put in line with final edge of cross-section
and outside where cross-section will be milled
use line scans, $\sim 2 \mu \mathrm{~m}$ long
one on each side of the cross-section
2. Deposit Platinum bar
$x=1-2 \mu \mathrm{~m}$ wider than cross-section
$y=\sim 2$ microns
$z=$ height of step of $1 \mu \mathrm{~m}$
$B C=x{ }^{*} y$ * $1^{*} 6 \mathrm{pA} / \mu \mathrm{m}^{2}$
application file $=$ Pt deposition
3. Mill as usual, with fiducial as a guide for where to stop milling

Reduces cumulative effects of stacked tungsten plugs.
Voids and edges transfer to lower levels

1. Bulk mill as usual an extra $3 \mu \mathrm{~m}$ wider
2. Save stage location - "normal"
3. Stage rotate 90°
4. Tilt stage to $8^{\circ}-10^{\circ}$
5. Scan rotate -90° (optional)
6. Save position -"angled"
7. Polish as usual
8. To check progress, go to stage location "normal"
9. Return to milling at stage location "angled"
10. Return to normal with "normal"

Angled Cut

| | Key |
| :--- | :--- | :--- |
| - | Metal deposition |
| - | SEM |
| - | FIB |

